Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guy T. Carter is active.

Publication


Featured researches published by Guy T. Carter.


Nature Reviews Drug Discovery | 2005

The evolving role of natural products in drug discovery

Frank E. Koehn; Guy T. Carter

Natural products and their derivatives have historically been invaluable as a source of therapeutic agents. However, in the past decade, research into natural products in the pharmaceutical industry has declined, owing to issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening. However, as discussed in this review, recent technological advances that help to address these issues, coupled with unrealized expectations from current lead-generation strategies, have led to a renewed interest in natural products in drug discovery.


Current Pharmaceutical Design | 2009

Drug-Like Property Concepts in Pharmaceutical Design

Li Di; Edward H. Kerns; Guy T. Carter

The pharmaceutical industry is facing an ever increasing challenge to deliver safer and more effective medicines. Traditionally, drug discovery programs were driven solely by potency, regardless of the properties. As a result, the development of non-drug-like molecules was costly, had high risk and low success rate. To meet the challenges, the bar has been rising higher for drug candidates. They not only need to be active, but also drug-like to be advanced to clinical development. Drug-like properties, such as solubility, permeability, metabolic stability and transporter effects are of critical importance for the success of drug candidates. They affect oral bioavailability, metabolism, clearance, toxicity, as well as in vitro pharmacology. Insoluble and impermeable compounds can result in erroneous biological data and unreliable SAR in enzyme and cell-based assays. Rapid metabolism by enzymes and high efflux by transporters can lead to high clearance, short half-life, low systemic exposure and inadequate efficacy. Early property information helps teams make informed decisions and avoids wasting precious resources. Structure-property relationships are essential to guide structural modification to improve properties. High throughput ADME/TOX assays have been implemented and are being widely used to drive drug discovery projects in parallel with activity screening. Property design has become an integrated and inseparable part of the modern drug discovery paradigm. The approach has been proven to be a winning strategy.


Natural Product Reports | 2011

Natural products and Pharma 2011: strategic changes spur new opportunities.

Guy T. Carter

Although natural products have been marginalized by major pharmaceutical companies over the last 20-30 years, the changing landscape of drug discovery now favors a greatly enhanced role for Natures privileged structures. Screening for drug leads in phenotypic screens provides the best opportunity to realize the value of natural products. Advances in total synthesis, especially function-oriented syntheses and biosynthetic technologies offer new avenues for the medicinal chemical optimization of biologically active secondary metabolites. Genomic research has given new insights into biosynthetic processes as well as providing evidence that a wealth of unrealized biosynthetic potential remains to be explored. As Pharma strives to develop innovative and highly effective new drugs, natural products will be increasingly valued as sources of novel leads whose further development will be expedited by emerging technologies.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities

Benfang Ruan; Kevin Pong; Flora Jow; Mark R. Bowlby; Robert A. Crozier; Danni Liu; Shi Liang; Yi Chen; Mary Lynn T. Mercado; Xidong Feng; Frann Bennett; David von Schack; Leonard A. McDonald; Margaret M. Zaleska; Andrew R. Wood; Peter Reinhart; Ronald L. Magolda; Jerauld Skotnicki; Menelas N. Pangalos; Frank E. Koehn; Guy T. Carter; Magid Abou-Gharbia; Edmund I. Graziani

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the β1-subunit of L-type voltage-dependent Ca2+ channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca2+ channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca2+-induced cell death by modulating Ca2+ channels and promote neurite outgrowth via FKBP52 binding.


Tetrahedron Letters | 2002

Pyrrocidines A and B, new antibiotics produced by a filamentous fungus

Haiyin He; Hui Y. Yang; Ramunas Bigelis; Eric H. Solum; Michael Greenstein; Guy T. Carter

Abstract Pyrrocidines A ( 1 ) and B ( 2 ), two new antibiotics, containing rare 13-membered macrocycles, were isolated from the fermentation broth of a fungus, LL -Cyan426. Pyrrocidine A ( 1 ) exhibited potent activity against Gram-positive bacteria, including drug-resistant strains. The structures of these compounds were established using spectroscopic methods.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate

Jennifer N. Andexer; Steven Gary Kendrew; Mohammad Nur-e-Alam; Orestis Lazos; Teresa A. Foster; Anna-Sophie Zimmermann; Tony Warneck; Dipen Suthar; Nigel Coates; Frank E. Koehn; Jerauld Skotnicki; Guy T. Carter; Matthew Alan Gregory; Christine J. Martin; Steven James Moss; Peter F. Leadlay; Barrie Wilkinson

The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4R,5R)-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus. Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4R,5R)-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.


Expert Opinion on Drug Discovery | 2008

Strategies to assess blood–brain barrier penetration

Li Di; Edward H. Kerns; Guy T. Carter

Background: The principles and screening strategies for brain penetration in drug discovery are important in identifying drug candidates with desirable CNS properties. Objective: Define key variables and assays that are essential for determining brain penetration. Methods: This review covers issues, methods, and strategies for assessing brain penetration of small molecules in drug discovery. Results/conclusion: Brain penetration is assessed using both initial rate and extent at steady-state. Unbound drug is the active species that exerts pharmacological effects. Low brain penetration can be due to low blood–brain barrier (BBB) permeability, P-glycoprotein (Pgp) efflux, or high plasma protein binding. Successful methods include: parallel artificial membrane permeability assay (PAMPA)-BBB permeability, MDR1-MDCKII for Pgp efflux, B-P dialysis for fraction unbound, and in vivo B/P ratio to extrapolate unbound brain drug concentration.


Applied and Environmental Microbiology | 2010

Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants

Jeffrey E. Janso; Guy T. Carter

ABSTRACT The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential.


Gene | 1994

The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway

Margaret H. Lai; Martin Bard; Charles A. Pierson; John F.Alexander; Mark G. Goebl; Guy T. Carter; Donald R. Kirsch

The Saccharomyces cerevisiae ERG24 gene, encoding sterol delta 14 reductase (Erg24p), was cloned by selecting strains carrying sequences on a 2 mu-based vector for resistance to the morpholine fungicide, fenpropimorph (Fp). Four distinct plasmid inserts which conferred Fp resistance (FpR) were recovered (plasmids pML99, pML100, pML101 and pM103). Although Fp is reported to inhibit activity of Erg24p and sterol delta 8-delta 7 isomerase (Erg2p; encoded by ERG2), none of the inserts had restriction maps resembling ERG2. In addition, a 2 mu plasmid overexpression of the ERG2 sequence did not produce FpR. Characterization studies were focused on plasmid pML100, because it was the only plasmid to confer FpR consistently when tested in a number of different genetic backgrounds. Tests with a panel of fungicides indicated that pML100 conferred significant resistance only to compounds (Fp, tridemorph, fenpropidin and azasterol) which have a shared site of action, Erg24p. An insertional disruption of pML100 resulted in an obligate anaerobic phenotype, indicating a lesion in sterol biosynthesis. Sterol analysis of the disrupted mutant demonstrated the accumulation of ignosterol, indicating a loss of Erg24p activity. A SphI-XbaI fragment of pML100 was sequenced, revealing the presence of an ORF encoding a 438-amino-acid protein, which is highly similar to those encoded by two previously reported yeast drug sensitivity genes, sts1+ (Schizosaccharomyces pombe) and YGL022 (S. cerevisiae). Analyses of these genes demonstrated that strains carrying disruptions of sts1+ or YGL022 have ergosterol biosynthesis defects in the enzyme, sterol C-24(28) reductase (Erg4p; encoded by ERG4).(ABSTRACT TRUNCATED AT 250 WORDS)


Tetrahedron Letters | 1993

Diepoxins, novel fungal metabolites with antibiotic activity

Gerhard Schlingmann; Robert R. West; Lisa Milne; Cedric J. Pearce; Guy T. Carter

Abstract Diepoxins ( 1-4 ), unique, spiroketal-linked bisepoxides have been isolated from a filamentous fungus. Structures were assigned to these compounds primarily on the basis of NMR data.

Collaboration


Dive into the Guy T. Carter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge