Guy Werlen
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guy Werlen.
Nature | 2006
Mark A. Daniels; Emma Teixeiro; Jason Gill; Barbara Hausmann; Dominique Roubaty; Kaisa Holmberg; Guy Werlen; Georg A. Holländer; Nicholas R. J. Gascoigne; Ed Palmer
A healthy individual can mount an immune response to exogenous pathogens while avoiding an autoimmune attack on normal tissues. The ability to distinguish between self and non-self is called ‘immunological tolerance’ and, for T lymphocytes, involves the generation of a diverse pool of functional T cells through positive selection and the removal of overtly self-reactive thymocytes by negative selection during T-cell ontogeny. To elucidate how thymocytes arrive at these cell fate decisions, here we have identified ligands that define an extremely narrow gap spanning the threshold that distinguishes positive from negative selection. We show that, at the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signalling intermediates and the induction of negative selection. The ability to compartmentalize signalling molecules differentially in the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the basis for establishing central tolerance.
The EMBO Journal | 1998
Guy Werlen; Estela Jacinto; Ying Xia; Michael Karin
Costimulation of the T cell receptor (TCR) and CD28 is required for optimal interleukin‐2 (IL‐2) induction. These signals, which can be replaced by the pharmacological agents phorbol ester (PMA) and Ca2+ ionophore, synergistically activate the mitogen‐activated protein kinase (MAPK) JNK. Cyclosporin A, an inhibitor of the Ca2+‐dependent phosphatase calcineurin which blocks IL‐2 induction, abrogates Ca2+‐triggered synergistic JNK activation. As protein kinase C (PKC) downregulation inhibits PMA+ionophore‐induced JNK activation, we examined whether a particular PKC isoform is preferentially involved in this response. We found that PKC‐θ but neither PKC‐α nor PKC‐ϵ participates in JNK activation, whereas all three PKCs lead to ERK MAPK activation. PKC‐θ specifically cooperates with calcineurin, and together their signals converge on (or upstream of) Rac leading to potent JNK activation. Similarly, calcineurin and PKC‐θ specifically synergize to induce transcription of reporters driven by the c‐jun and IL‐2 promoters. PKC‐θ and calcineurin are also partially responsible for the synergistic activation of JNK following TCR and CD28 ligation. Preferential cooperation between PKC‐θ and calcineurin is observed in Jurkat T cells but not in HeLa cells. These results indicate that PKC isozymes have distinct biological functions and suggest that synergistic JNK activation is an important function for PKC‐θ in T‐cell activation.
Immunity | 2001
Caridad Rosette; Guy Werlen; Mark A. Daniels; Philmore O. Holman; S. Munir Alam; Paul J. Travers; Nicholas R. J. Gascoigne; Ed Palmer; Stephen C. Jameson
The widely accepted kinetic proofreading theory proposes that rapid TCR dissociation from a peptide/MHC ligand allows for stimulation of early but not late T cell activation events, explaining why low-affinity TCR ligands are poor agonists. We identified a low-affinity TCR ligand which stimulated late T cell responses but, contrary to predictions from kinetic proofreading, inefficiently induced early activation events. Furthermore, responses induced by this ligand were kinetically delayed compared to its high-affinity counterpart. Using peptide/MHC tetramers, we showed that activation characteristics could be dissociated from TCR occupancy by the peptide/MHC ligands. Our data argue that T cell responses are triggered by a cumulative signal which is reached at different time points for different TCR ligands.
Immunity | 1998
Estela Jacinto; Guy Werlen; Michael Karin
The MAP kinase (MAPK) JNK but not ERK is synergistically activated during costimulation of T cells. We examined how protein tyrosine kinases (PTKs) and GTPases differentially regulate JNK and ERK in T cells. While PTKs are not selective, small GTPases display distinct MAPK-activating functions. Whereas Ras activates ERK, Rac activates JNK. Rac cooperates with a Syk-generated signal to enhance JNK activation and appears to be at a nodal point for pathways emanating from CD28, calcineurin, and protein kinase C. AP-1- and NF-AT-dependent reporters are stimulated by Rac and Syk and are dependent on JNK. Unlike Syk, the PTK Lck activates JNK but does not cooperate with Rac, resulting in weak AP-1 and NF-AT activation. Therefore, signals generated by PTKs are functionally distinct and need to be integrated to induce transcriptional responses.
Molecular and Cellular Biology | 2006
Matthew Lovatt; Andrew Filby; Valentino Parravicini; Guy Werlen; Ed Palmer; Rose Zamoyska
ABSTRACT The src family kinases p56lck (Lck) and p59fyn (Fyn) are the most proximal signaling molecules to be activated downstream of the T-cell receptor. Using an inducible transgenic model, we can regulate the expression of Lck in primary T cells and ask how the signaling cascade and differentiation potential are affected by the absence or the presence of reduced levels of Lck. We show that in naïve T cells, Lck controls the threshold of activation by preferentially regulating multiple signaling pathways that result in the mobilization of Ca2+ through activation of phospholipase C-gamma and protein kinase C as well as activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Fyn is also able to stimulate the ERK/MAPK pathway in primary T cells but has little influence on the mobilization of Ca2+. Only Lck efficiently stimulates production of diacylglycerol and therefore RasGRP1 recruitment to the plasma membrane and phosphorylation of Shc, suggesting that Fyn activates ERK via a different upstream signaling route. Finally, we show that signals through Lck are essential for the development of T-cell-effector potential, particularly for effective cytokine transcription.
Journal of Immunology | 2011
Yoshihiko Yamakita; Fumio Matsumura; Michael W. Lipscomb; Po-Chien Chou; Guy Werlen; Janis K. Burkhardt; Shigeko Yamashiro
Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes.
Journal of Immunology | 2014
Po-Chien Chou; Won Jun Oh; Chang-Chih Wu; Joseph G. Moloughney; Markus A. Rüegg; Michael N. Hall; Estela Jacinto; Guy Werlen
An efficient immune response relies on the presence of T cells expressing a functional TCR. Whereas the mechanisms generating TCR diversity for antigenic recognition are well defined, what controls its surface expression is less known. In this study, we found that deletion of the mammalian target of rapamycin complex (mTORC) 2 component rictor at early stages of T cell development led to aberrant maturation and increased proteasomal degradation of nascent TCRs. Although CD127 expression became elevated, the levels of TCRs as well as CD4, CD8, CD69, Notch, and CD147 were significantly attenuated on the surface of rictor-deficient thymocytes. Diminished expression of these receptors led to suboptimal signaling, partial CD4−CD8− double-negative 4 (CD25−CD44−) proliferation, and CD4+CD8+ double-positive activation as well as developmental blocks at the CD4−CD8− double-negative 3 (CD25+CD44−) and CD8–immature CD8+ single-positive stages. Because CD147 glycosylation was also defective in SIN1-deficient fibroblasts, our findings suggest that mTORC2 is involved in the co/posttranslational processing of membrane receptors. Thus, mTORC2 impacts development via regulation of the quantity and quality of receptors important for cell differentiation.
European Journal of Immunology | 2009
Raedun Clarke; Sandra Thiemann; Yosef Refaeli; Guy Werlen; Terry A. Potter
The majority (>95%) of thymocytes undergo apoptosis during selection in the thymus. Several mechanisms have been proposed to explain how apoptosis of thymocytes that are not positively selected occurs; however, it is unknown whether thymocytes die purely by “neglect” or whether signaling through a cell‐surface receptor initiates an apoptotic pathway. We have previously demonstrated that on double positive thymocytes the ligation of CD8 in the absence of TCR engagement results in apoptosis and have postulated this is a mechanism to remove thymocytes that have failed positive selection. On mature single positive T cells CD8 acts as a co‐receptor to augment signaling through the TCR that is dependent on the phosphorylation of the adaptor protein, linker for activation of T cells (LAT). Here, we show that during CD8‐mediated apoptosis of double positive thymocytes there is an increase in the association of CD8 with LAT and an increase in LAT tyrosine phosphorylation. Decreasing LAT expression and mutation of tyrosine residues of LAT reduced apoptosis upon crosslinking of CD8. Our results identify novel functions for both CD8 and LAT that are independent of TCR signal transduction and suggest a mechanism for signal transduction leading to apoptosis upon CD8 crosslinking.
Cancer Research | 2016
Estela Jacinto; Joseph G. Moloughney; Peter K. Kim; Nicole M. Vega-Cotto; Chang-Chih Wu; Thomas Lynch; Sisi Zhang; Matthew Adlam; Sai Guntaka; Po-Chien Chou; Joshua D. Rabinowitz; Guy Werlen
Highly proliferating cells are particularly dependent on glucose and glutamine for bioenergetics and to fuel biosynthesis of macromolecules. The signals that respond to the fluctuations of these nutrients and how they control metabolic pathways remain poorly understood. mTOR, as part of mTOR complex 1 (mTORC1), responds to amino acids and plays a central role in metabolism. On the other hand, little is known on how mTORC2, consisting of the core components mTOR, rictor, SIN1 and mLST8 is regulated and its metabolic functions. The phosphorylation of the mTORC2 substrate, Akt, is enhanced in cancer cells, suggesting that mTORC2 becomes deregulated during tumorigenesis. Here we found that the activity of mTORC2 is enhanced by diminishing glutamine-derived metabolites. mTORC2 activity is required by glutamine-requiring biosynthetic pathways such as the hexosamine biosynthetic pathway (HBP). Acute nutrient withdrawal augments Akt phosphorylation but does not affect GFAT1 expression. However, extreme starvation that eventually depletes intracellular glutamine metabolites inactivates mTORC2 and downregulates GFAT1 expression. Thus, while mTORC1 senses glutamine abundance to promote anabolism, mTORC2 responds to declining glutamine catabolites in order to restore metabolic homeostasis. Our findings uncover the role of mTORC2 in metabolic reprogramming and provide insights on more effective therapeutic strategies for glutamine-dependent tumors. Citation Format: Estela Jacinto, Joseph Moloughney, Peter K. Kim, Nicole M. Vega-Cotto, Chang-Chih Wu, Thomas Lynch, Sisi Zhang, Matthew Adlam, Sai Guntaka, Po-Chien Chou, Joshua D. Rabinowitz, Guy Werlen. The mTORC2 target Akt is regulated in response to glutamine metabolite levels. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 21.
Journal of Biological Chemistry | 2018
Joseph G. Moloughney; Nicole M. Vega-Cotto; Sharon Liu; Chadni Patel; Peter K. Kim; Chang-Chih Wu; Danielle Albaciete; Cedric Magaway; Austin Chang; Swati Rajput; Xiaoyang Su; Guy Werlen; Estela Jacinto
The mechanistic target of rapamycin (mTOR) controls metabolic pathways in response to nutrients. Recently, we have shown that mTOR complex 2 (mTORC2) modulates the hexosamine biosynthetic pathway (HBP) by promoting the expression of the key enzyme of the HBP, glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1). Here, we found that GFAT1 Ser-243 phosphorylation is also modulated in an mTORC2-dependent manner. In response to glutamine limitation, active mTORC2 prolongs the duration of Ser-243 phosphorylation, albeit at lower amplitude. Blocking glycolysis using 2-deoxyglucose robustly enhances Ser-243 phosphorylation, correlating with heightened mTORC2 activation, increased AMPK activity, and O-GlcNAcylation. However, when 2-deoxyglucose is combined with glutamine deprivation, GFAT1 Ser-243 phosphorylation and mTORC2 activation remain elevated, whereas AMPK activation and O-GlcNAcylation diminish. Phosphorylation at Ser-243 promotes GFAT1 expression and production of GFAT1-generated metabolites including ample production of the HBP end-product, UDP-GlcNAc, despite nutrient starvation. Hence, we propose that the mTORC2-mediated increase in GFAT1 Ser-243 phosphorylation promotes flux through the HBP to maintain production of UDP-GlcNAc when nutrients are limiting. Our findings provide insights on how the HBP is reprogrammed via mTORC2 in nutrient-addicted cancer cells.