Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwénaël Birot is active.

Publication


Featured researches published by Gwénaël Birot.


EURASIP Journal on Advances in Signal Processing | 2012

Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches

Doha Safieddine; Amar Kachenoura; Laurent Albera; Gwénaël Birot; Ahmad Karfoul; Anca Pasnicu; Arnaud Biraben; Fabrice Wendling; Lotfi Senhadji; Isabelle Merlet

Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that the performance of muscle artifact correction methods strongly depend on the level of data contamination, and of the source configuration underlying EEG signals. Eventually, some insights into the numerical complexity of these four algorithms are given.


Brain Stimulation | 2013

Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: A computational modeling study

Behnam Molaee-Ardekani; Javier Márquez-Ruiz; Isabelle Merlet; Rocío Leal-Campanario; Agnès Gruart; Raudel Sánchez-Campusano; Gwénaël Birot; Giulio Ruffini; JoséMaría Delgado-García; Fabrice Wendling

Although it is well-admitted that transcranial Direct Current Stimulation (tDCS) allows for interacting with brain endogenous rhythms, the exact mechanisms by which externally-applied fields modulate the activity of neurons remain elusive. In this study a novel computational model (a neural mass model including subpopulations of pyramidal cells and inhibitory interneurons mediating synaptic currents with either slow or fast kinetics) of the cerebral cortex was elaborated to investigate the local effects of tDCS on neuronal populations based on an in-vivo experimental study. Model parameters were adjusted to reproduce evoked potentials (EPs) recorded from the somatosensory cortex of the rabbit in response to air-puffs applied on the whiskers. EPs were simulated under control condition (no tDCS) as well as under anodal and cathodal tDCS fields. Results first revealed that a feed-forward inhibition mechanism must be included in the model for accurate simulation of actual EPs (peaks and latencies). Interestingly, results revealed that externally-applied fields are also likely to affect interneurons. Indeed, when interneurons get polarized then the characteristics of simulated EPs become closer to those of real EPs. In particular, under anodal tDCS condition, more realistic EPs could be obtained when pyramidal cells were depolarized and, simultaneously, slow (resp. fast) interneurons became de- (resp. hyper-) polarized. Geometrical characteristics of interneurons might provide some explanations for this effect.


PLOS ONE | 2013

From Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and Physiological Modeling Study

Isabelle Merlet; Gwénaël Birot; Ricardo Salvador; Behnam Molaee-Ardekani; Abeye Mekonnen; Aureli Soria-Frish; Giulio Ruffini; Pedro Cavaleiro Miranda; Fabrice Wendling

Both biophysical and neurophysiological aspects need to be considered to assess the impact of electric fields induced by transcranial current stimulation (tCS) on the cerebral cortex and the subsequent effects occurring on scalp EEG. The objective of this work was to elaborate a global model allowing for the simulation of scalp EEG signals under tCS. In our integrated modeling approach, realistic meshes of the head tissues and of the stimulation electrodes were first built to map the generated electric field distribution on the cortical surface. Secondly, source activities at various cortical macro-regions were generated by means of a computational model of neuronal populations. The model parameters were adjusted so that populations generated an oscillating activity around 10 Hz resembling typical EEG alpha activity. In order to account for tCS effects and following current biophysical models, the calculated component of the electric field normal to the cortex was used to locally influence the activity of neuronal populations. Lastly, EEG under both spontaneous and tACS-stimulated (transcranial sinunoidal tCS from 4 to 16 Hz) brain activity was simulated at the level of scalp electrodes by solving the forward problem in the aforementioned realistic head model. Under the 10 Hz-tACS condition, a significant increase in alpha power occurred in simulated scalp EEG signals as compared to the no-stimulation condition. This increase involved most channels bilaterally, was more pronounced on posterior electrodes and was only significant for tACS frequencies from 8 to 12 Hz. The immediate effects of tACS in the model agreed with the post-tACS results previously reported in real subjects. Moreover, additional information was also brought by the model at other electrode positions or stimulation frequency. This suggests that our modeling approach can be used to compare, interpret and predict changes occurring on EEG with respect to parameters used in specific stimulation configurations.


NeuroImage: Clinical | 2014

Head model and electrical source imaging: A study of 38 epileptic patients

Gwénaël Birot; Laurent Spinelli; Serge Vulliemoz; Pierre Mégevand; Denis Brunet; Margitta Seeck; Christoph M. Michel

Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI.


NeuroImage | 2014

EEG extended source localization: Tensor-based vs. conventional methods.

Hanna Becker; Laurent Albera; Pierre Comon; Martin Haardt; Gwénaël Birot; Fabrice Wendling; Martine Gavaret; Christian-George Bénar; Isabelle Merlet

The localization of brain sources based on EEG measurements is a topic that has attracted a lot of attention in the last decades and many different source localization algorithms have been proposed. However, their performance is limited in the case of several simultaneously active brain regions and low signal-to-noise ratios. To overcome these problems, tensor-based preprocessing can be applied, which consists in constructing a space-time-frequency (STF) or space-time-wave-vector (STWV) tensor and decomposing it using the Canonical Polyadic (CP) decomposition. In this paper, we present a new algorithm for the accurate localization of extended sources based on the results of the tensor decomposition. Furthermore, we conduct a detailed study of the tensor-based preprocessing methods, including an analysis of their theoretical foundation, their computational complexity, and their performance for realistic simulated data in comparison to conventional source localization algorithms such as sLORETA, cortical LORETA (cLORETA), and 4-ExSo-MUSIC. Our objective consists, on the one hand, in demonstrating the gain in performance that can be achieved by tensor-based preprocessing, and, on the other hand, in pointing out the limits and drawbacks of this method. Finally, we validate the STF and STWV techniques on real measurements to demonstrate their usefulness for practical applications.


Journal of Neuroscience Methods | 2013

Automatic detection of fast ripples

Gwénaël Birot; Amar Kachenoura; Laurent Albera; Christian Bénar; Fabrice Wendling

OBJECTIVE We propose a new method for automatic detection of fast ripples (FRs) which have been identified as a potential biomarker of epileptogenic processes. METHODS This method is based on a two-stage procedure: (i) global detection of events of interest (EOIs, defined as transient signals accompanied with an energy increase in the frequency band of interest 250-600Hz) and (ii) local energy vs. frequency analysis of detected EOIs for classification as FRs, interictal epileptic spikes or artifacts. For this second stage, two variants were implemented based either on Fourier or wavelet transform. The method was evaluated on simulated and real depth-EEG signals (human, animal). The performance criterion was based on receiving operator characteristics. RESULTS The proposed detector showed high performance in terms of sensitivity and specificity. CONCLUSIONS As designed to specifically detect FRs, the method outperforms any method simply based on the detection of energy changes in high-pass filtered signals and avoids spurious detections caused by sharp transient events often present in raw signals. SIGNIFICANCE In most of epilepsy surgery units, huge data sets are generated during pre-surgical evaluation. We think that the proposed detection method can dramatically decrease the workload in assessing the presence of FRs in intracranial EEGs.


IEEE Transactions on Signal Processing | 2007

Higher Order Direction Finding From Arrays With Diversely Polarized Antennas: The PD-2q-MUSIC Algorithms

Pascal Chevalier; Anne Ferreol; Laurent Albera; Gwénaël Birot

Fourth-order (FO) and, a short while ago, 2qth-order, q ges 2, high-resolution methods exploiting the information contained in the FO and the 2qth-order, q ges 2, statistics of the data, respectively, are now available for direction finding of non-Gaussian signals. Among these methods, the 2q-MUSIC methods, q ges 2, are the most popular. These methods are asymptotically robust to a Gaussian background noise whose spatial coherence is unknown and offer increasing resolution and robustness to modeling errors jointly with an increasing processing capacity as q increases. However, these methods have been mainly developed for arrays with identical sensors only and cannot put up with arrays of diversely polarized sensors in the presence of diversely polarized sources. In this context, the purpose of this paper is to introduce, for arbitrary values of q, q ges 1, three extensions of the 2q-MUSIC method, able to put up with arrays having diversely polarized sensors for diversely polarized sources. This gives rise to the so-called polarization diversity 2q-MUSIC (PD-2q-MUSIC) algorithms. For a given value of q, these algorithms are shown to increase the resolution, the robustness to modeling errors, and the processing capacity of the 2q-MUSIC method in the presence of diversely polarized sources. Besides, some PD-2q-MUSIC algorithms are shown to offer increasing performances with q when resolution in both direction of arrival and polarization is required.


IEEE Transactions on Signal Processing | 2010

Sequential High-Resolution Direction Finding From Higher Order Statistics

Gwénaël Birot; Laurent Albera; Pascal Chevalier

The classical higher order MUSIC-like methods based on a simultaneous search for all directions of arrival (DOAs) show: i) a capacity for processing underdetermined mixtures of sources; ii) a high robustness with respect to both a Gaussian noise with unknown spatial coherence and modeling errors; and iii) a better resolution than algorithms based on second order statistics. However, these methods have some limits: for a finite number of samples, they show poor performance for sources exhibiting quasi-colinear DOAs. In order to overcome this drawback, two new sequential MUSIC-like algorithms are proposed in this paper, namely the 2q-D-MUSIC and the 2q -RAP-MUSIC (q ≥ 2) algorithms. These methods are based on a sequential optimization of proposed generalized noise and signal 2q-MUSIC metrics, respectively. That allows us to learn and then to take into account the level of correlation between sources. A comparative study, both in terms of performance and numerical complexity, is performed showing the interest of the proposed techniques when some sources are angularly close. Eventually, an upper bound of the maximum number of sources which can be processed by the 2q-MUSIC-like techniques is given for all q. This improves recent work on the 2qth-order virtual arrays.


IEEE Transactions on Signal Processing | 2010

Blind Underdetermined Mixture Identification by Joint Canonical Decomposition of HO Cumulants

Ahmad Karfoul; Laurent Albera; Gwénaël Birot

A new family of cumulant-based algorithms is proposed in order to blindly identify potentially underdetermined mixtures of statistically independent sources. These algorithms perform a joint canonical decomposition (CAND) of several higher order cumulants through a CAND of a three-way array with special symmetries. These techniques are studied in terms of identifiability, performance and numerical complexity. From a signal processing viewpoint, the proposed methods are shown i) to have a better estimation resolution and ii) to be able to process more sources than the other classical cumulant-based techniques. Second, from a numerical analysis viewpoint, we deal with the convergence speed of several procedures for three-way array decomposition, such as the ACDC scheme. We also show how to accelerate the iterative CAND algorithms by using differently the symmetries of the considered three-way array. Next, from a multilinear algebra viewpoint the paper aims at giving some insights on the uniqueness of a joint CAND of several Hermitian multiway arrays compared to the CAND of only one array. This allows us, as a result, to extend the concept of virtual array (VA) to the case of combination of several VAs.


NeuroImage | 2016

Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data

Rasheda Arman Chowdhury; Isabelle Merlet; Gwénaël Birot; Eliane Kobayashi; Anca Nica; Arnaud Biraben; Fabrice Wendling; Jean-Marc Lina; Laurent Albera; Christophe Grova

Electric Source Imaging (ESI) and Magnetic Source Imaging (MSI) of EEG and MEG signals are widely used to determine the origin of interictal epileptic discharges during the pre-surgical evaluation of patients with epilepsy. Epileptic discharges are detectable on EEG/MEG scalp recordings only when associated with a spatially extended cortical generator of several square centimeters, therefore it is essential to assess the ability of source localization methods to recover such spatial extent. In this study we evaluated two source localization methods that have been developed for localizing spatially extended sources using EEG/MEG data: coherent Maximum Entropy on the Mean (cMEM) and 4th order Extended Source Multiple Signal Classification (4-ExSo-MUSIC). In order to propose a fair comparison of the performances of the two methods in MEG versus EEG, this study considered realistic simulations of simultaneous EEG/MEG acquisitions taking into account an equivalent number of channels in EEG (257 electrodes) and MEG (275 sensors), involving a biophysical computational neural mass model of neuronal discharges and realistically shaped head models. cMEM and 4-ExSo-MUSIC were evaluated for their sensitivity to localize complex patterns of epileptic discharges which includes (a) different locations and spatial extents of multiple synchronous sources, and (b) propagation patterns exhibited by epileptic discharges. Performance of the source localization methods was assessed using a detection accuracy index (Area Under receiver operating characteristic Curve, AUC) and a Spatial Dispersion (SD) metric. Finally, we also presented two examples illustrating the performance of cMEM and 4-ExSo-MUSIC on clinical data recorded using high resolution EEG and MEG. When simulating single sources at different locations, both 4-ExSo-MUSIC and cMEM exhibited excellent performance (median AUC significantly larger than 0.8 for EEG and MEG), whereas, only for EEG, 4-ExSo-MUSIC showed significantly larger AUC values than cMEM. On the other hand, cMEM showed significantly lower SD values than 4-ExSo-MUSIC for both EEG and MEG. When assessing the impact of the source spatial extent, both methods provided consistent and reliable detection accuracy for a wide range of source spatial extents (source sizes ranging from 3 to 20cm2 for MEG and 3 to 30cm2 for EEG). For both EEG and MEG, 4-ExSo-MUSIC localized single source of large signal-to-noise ratio better than cMEM. In the presence of two synchronous sources, cMEM was able to distinguish well the two sources (their location and spatial extent), while 4-ExSo-MUSIC only retrieved one of them. cMEM was able to detect the spatio-temporal propagation patterns of two synchronous activities while 4-ExSo-MUSIC favored the strongest source activity. Overall, in the context of localizing sources of epileptic discharges from EEG and MEG data, 4-ExSo-MUSIC and cMEM were found accurately sensitive to the location and spatial extent of the sources, with some complementarities. Therefore, they are both eligible for application on clinical data.

Collaboration


Dive into the Gwénaël Birot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Chevalier

Conservatoire national des arts et métiers

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge