Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwendalyn J. Randolph is active.

Publication


Featured researches published by Gwendalyn J. Randolph.


Blood | 2010

Nomenclature of monocytes and dendritic cells in blood

Loems Ziegler-Heitbrock; Petronela Ancuta; Suzanne M. Crowe; Marc Dalod; Veronika Grau; Derek N. J. Hart; Pieter J. M. Leenen; Yong-Jun Liu; G. Gordon MacPherson; Gwendalyn J. Randolph; Juergen E. Scherberich; Juergen Schmitz; Ken Shortman; Silvano Sozzani; Herbert Strobl; Marek Zembala; Jonathan M. Austyn; Manfred B. Lutz

Monocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface markers and flow cytometry, and subpopulations have been described. The present document proposes a nomenclature for these cells and defines 3 types of monocytes (classical, intermediate, and nonclassical monocytes) and 3 types of dendritic cells (plasmacytoid and 2 types of myeloid dendritic cells) in human and in mouse blood. This classification has been approved by the Nomenclature Committee of the International Union of Immunological Societies, and we are convinced that it will facilitate communication among experts and in the wider scientific community.


Nature Biotechnology | 2007

Exploiting lymphatic transport and complement activation in nanoparticle vaccines.

Sai T. Reddy; André J. van der Vlies; Eleonora Simeoni; Veronique Angeli; Gwendalyn J. Randolph; Conlin P. O'Neil; Leslie K Lee; Melody A. Swartz; Jeffrey A. Hubbell

Antigen targeting and adjuvancy schemes that respectively facilitate delivery of antigen to dendritic cells and elicit their activation have been explored in vaccine development. Here we investigate whether nanoparticles can be used as a vaccine platform by targeting lymph node–residing dendritic cells via interstitial flow and activating these cells by in situ complement activation. After intradermal injection, interstitial flow transported ultra-small nanoparticles (25 nm) highly efficiently into lymphatic capillaries and their draining lymph nodes, targeting half of the lymph node–residing dendritic cells, whereas 100-nm nanoparticles were only 10% as efficient. The surface chemistry of these nanoparticles activated the complement cascade, generating a danger signal in situ and potently activating dendritic cells. Using nanoparticles conjugated to the model antigen ovalbumin, we demonstrate generation of humoral and cellular immunity in mice in a size- and complement-dependent manner.


Nature Reviews Immunology | 2005

Dendritic-cell trafficking to lymph nodes through lymphatic vessels

Gwendalyn J. Randolph; Veronique Angeli; Melody A. Swartz

Antigen-presenting dendritic cells often acquire foreign antigens in peripheral tissues such as the skin. Optimal encounter with naive T cells for the presentation of these antigens requires that the dendritic cells migrate to draining lymph nodes through lymphatic vessels. In this article, we review important aspects of what is known about dendritic-cell trafficking into and through lymphatic vessels to lymph nodes. We present these findings in the context of information about lymphatic-vessel biology. Gaining a better understanding of the crosstalk between dendritic cells and lymphatic vessels during the migration of dendritic cells to lymph nodes is essential for future advances in manipulating dendritic-cell migration as a means to fine-tune immune responses in clinical settings.


Science | 2009

In Vivo Analysis of Dendritic Cell Development and Homeostasis

Kang Liu; Gabriel D. Victora; Tanja A. Schwickert; Pierre Guermonprez; Matthew M. Meredith; Kaihui Yao; Fei Fan Chu; Gwendalyn J. Randolph; Alexander Y. Rudensky; Michel C. Nussenzweig

Dendritic cells (DCs) in lymphoid tissue arise from precursors that also produce monocytes and plasmacytoid DCs (pDCs). Where DC and monocyte lineage commitment occurs and the nature of the DC precursor that migrates from the bone marrow to peripheral lymphoid organs are unknown. We show that DC development progresses from the macrophage and DC precursor to common DC precursors that give rise to pDCs and classical spleen DCs (cDCs), but not monocytes, and finally to committed precursors of cDCs (pre-cDCs). Pre-cDCs enter lymph nodes through and migrate along high endothelial venules and later disperse and integrate into the DC network. Further cDC development involves cell division, which is controlled in part by regulatory T cells and fms-like tyrosine kinase receptor-3.


Immunity | 2009

Origin of the Lamina Propria Dendritic Cell Network

Milena Bogunovic; Florent Ginhoux; Julie Helft; Limin Shang; Daigo Hashimoto; Melanie Greter; Kang Liu; Claudia Jakubzick; Molly A. Ingersoll; Marylene Leboeuf; E. Richard Stanley; Michel C. Nussenzweig; Sergio A. Lira; Gwendalyn J. Randolph; Miriam Merad

CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.


Nature Immunology | 2006

Langerhans cells arise from monocytes in vivo.

Florent Ginhoux; Frank Tacke; Veronique Angeli; Milena Bogunovic; Martine Loubeau; Xu Ming Dai; E. Richard Stanley; Gwendalyn J. Randolph; Miriam Merad

Langerhans cells (LCs) are the only dendritic cells of the epidermis and constitute the first immunological barrier against pathogens and environmental insults. The factors regulating LC homeostasis remain elusive and the direct circulating LC precursor has not yet been identified in vivo. Here we report an absence of LCs in mice deficient in the receptor for colony-stimulating factor 1 (CSF-1) in steady-state conditions. Using bone marrow chimeric mice, we have established that CSF-1 receptor–deficient hematopoietic precursors failed to reconstitute the LC pool in inflamed skin. Furthermore, monocytes with high expression of the monocyte marker Gr-1 (also called Ly-6c/G) were specifically recruited to the inflamed skin, proliferated locally and differentiated into LCs. These results identify Gr-1hi monocytes as the direct precursors for LCs in vivo and establish the importance of the CSF-1 receptor in this process.


Nature Immunology | 2006

Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts.

Jordi Ochando; Chiho Homma; Yu Yang; Andrés Hidalgo; Alexandre Garin; Frank Tacke; Veronique Angeli; Yansui Li; Peter Boros; Yaozhong Ding; Rolf Jessberger; Giorgio Trinchieri; Sergio A. Lira; Gwendalyn J. Randolph; Jonathan S. Bromberg

The induction of alloantigen-specific unresponsiveness remains an elusive goal in organ transplantation. Here we identify plasmacytoid dendritic cells (pDCs) as phagocytic antigen-presenting cells essential for tolerance to vascularized cardiac allografts. Tolerizing pDCs acquired alloantigen in the allograft and then moved through the blood to home to peripheral lymph nodes. In the lymph node, alloantigen-presenting pDCs induced the generation of CCR4+CD4+CD25+Foxp3+ regulatory T cells (Treg cells). Depletion of pDCs or prevention of pDC lymph node homing inhibited peripheral Treg cell development and tolerance induction, whereas adoptive transfer of tolerized pDCs induced Treg cell development and prolonged graft survival. Thus, alloantigen-presenting pDCs home to the lymph nodes in tolerogenic conditions, where they mediate alloantigen-specific Treg cell development and allograft tolerance.


Nature Reviews Immunology | 2010

Unravelling mononuclear phagocyte heterogeneity

Frederic Geissmann; Siamon Gordon; David A. Hume; Allan McI. Mowat; Gwendalyn J. Randolph

When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research.


Journal of Immunology | 2006

Modulation of Dendritic Cell Trafficking to and from the Airways

Claudia Jakubzick; Frank Tacke; Jaime Llodra; Nico van Rooijen; Gwendalyn J. Randolph

We investigated the fate of latex (LX) particles that were introduced into mice intranasally. Macrophages acquired the vast majority of particles and outnumbered LX particle-bearing airway dendritic cells (DCs) by at least two orders of magnitude. Yet alveolar macrophages were refractory to migration to the draining lymph node (DLN), and all transport to the DLN could be ascribed to the few LX+ airway DCs. Upon macrophage depletion, markedly greater numbers of DCs were recruited into the alveolar space. Consequently, the number of DCs that carried particles to the DLN was boosted by 20-fold. Thus, a so far overlooked aspect of macrophage-mediated suppression of airway DC function stems from the modulation of DC recruitment into the airway. This increase in DC recruitment permitted the development of a robust assay to quantify the subsequent migration of DCs to the DLN. Therefore, we determined whether lung DCs use the same molecules that skin DCs use during migration to DLNs. Like skin DCs, lung DCs used CCR7 ligands and CCR8 for emigration to DLN, but the leukotriene C4 transporter multidrug resistance-related protein 1 did not mediate lung DC migration as it does in skin, indicating that pathways governing DC migration from different tissues partially differ in molecular regulation.


Journal of Immunology | 2008

Blood Monocyte Subsets Differentially Give Rise to CD103+ and CD103− Pulmonary Dendritic Cell Populations

Claudia Jakubzick; Frank Tacke; Florent Ginhoux; Amy J. Wagers; Nico van Rooijen; Matthias Mack; Miriam Merad; Gwendalyn J. Randolph

There are two major myeloid pulmonary dendritic cell (DC) populations: CD103+ DCs and CD11bhigh DCs. In this study, we investigated in detail the origins of both myeloid DC pools using multiple experimental approaches. We show that, in resting lung, Ly-6ChighCCR2high monocytes repopulated CD103+ DCs using a CCR2-dependent mechanism, and these DCs preferentially retained residual CCR2 in the lung, whereas, conversely, Ly-6ClowCCR2low monocytes repopulated CD11bhigh DCs. CX3CR1 was required to generate normal numbers of pulmonary CD11bhigh DCs, possibly because Ly-6Clow monocytes in the circulation, which normally express high levels of CX3CR1, failed to express bcl-2 and may have diminished survival in the circulation in the absence of CX3CR1. Overall, these data demonstrate that the two circulating subsets of monocytes give rise to distinct tissue DC populations.

Collaboration


Dive into the Gwendalyn J. Randolph's collaboration.

Top Co-Authors

Avatar

Frank Tacke

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

Veronique Angeli

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Jakubzick

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Miriam Merad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Emmanuel L. Gautier

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Florent Ginhoux

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Molly A. Ingersoll

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge