Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwenn Danet-Desnoyers is active.

Publication


Featured researches published by Gwenn Danet-Desnoyers.


Molecular Therapy | 2009

Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo

Michael C. Milone; Jonathan D. Fish; Carmine Carpenito; Richard G. Carroll; Gwendolyn K. Binder; David T. Teachey; Minu Samanta; Mehdi Lakhal; Brian S. Gloss; Gwenn Danet-Desnoyers; Dario Campana; James L. Riley; Stephan A. Grupp; Carl H. June

Persistence of T cells engineered with chimeric antigen receptors (CARs) has been a major barrier to use of these cells for molecularly targeted adoptive immunotherapy. To address this issue, we created a series of CARs that contain the T cell receptor-zeta (TCR-zeta) signal transduction domain with the CD28 and/or CD137 (4-1BB) intracellular domains in tandem. After short-term expansion, primary human T cells were subjected to lentiviral gene transfer, resulting in large numbers of cells with >85% CAR expression. In an immunodeficient mouse xenograft model of primary human pre-B-cell acute lymphoblastic leukemia, human T cells expressing anti-CD19 CARs containing CD137 exhibited the greatest antileukemic efficacy and prolonged (>6 months) survival in vivo, and were significantly more effective than cells expressing CARs containing TCR-zeta alone or CD28-zeta signaling receptors. We uncovered a previously unrecognized, antigen-independent effect of CARs expressing the CD137 cytoplasmic domain that likely contributes to the enhanced antileukemic efficacy and survival in tumor bearing mice. Furthermore, our studies revealed significant discrepancies between in vitro and in vivo surrogate measures of CAR efficacy. Together these results suggest that incorporation of the CD137 signaling domain in CARs should improve the persistence of CARs in the hematologic malignancies and hence maximize their antitumor activity.


PLOS Pathogens | 2011

Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

Craig B. Wilen; Jianbin Wang; John C. Tilton; Jeffrey C. Miller; Kenneth Kim; Edward J. Rebar; Scott Sherrill-Mix; Sean C. Patro; Anthony Secreto; Andrea P. O. Jordan; Gary Lee; Joshua Kahn; Pyone P. Aye; Bruce A. Bunnell; Andrew A. Lackner; James A. Hoxie; Gwenn Danet-Desnoyers; Frederic D. Bushman; James L. Riley; Philip D. Gregory; Carl H. June; Michael C. Holmes; Robert W. Doms

HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.


Nature Medicine | 2012

Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways.

Jian Huang; M. Nguyen-McCarty; Elizabeth O. Hexner; Gwenn Danet-Desnoyers; Peter S. Klein

Hematopoietic stem cell (HSC) self renewal and lineage commitment depend on complex interactions with the microenvironment. The ability to maintain or expand HSCs for clinical applications or basic research has been substantially limited because these interactions are not well defined. Recent evidence suggests that HSCs reside in a low-perfusion, reduced-nutrient niche and that nutrient-sensing pathways contribute to HSC homeostasis. Here we report that suppression of the mTOR pathway, an established nutrient sensor, combined with activation of canonical Wnt–β-catenin signaling, allows for the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that the combination of two clinically approved medications that together activate Wnt–β-catenin and inhibit mTOR signaling increases the number (but not the proportion) of long-term HSCs in vivo.


Blood | 2014

Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection.

Chuka A. Didigu; Craig B. Wilen; Jianbin Wang; Jennifer Duong; Anthony Secreto; Gwenn Danet-Desnoyers; James L. Riley; Phillip D. Gregory; Carl H. June; Michael C. Holmes; Robert W. Doms

HIV-1 entry into CD4(+) T cells requires binding of the virus to CD4 followed by engagement of either the C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4) coreceptor. Pharmacologic blockade or genetic inactivation of either coreceptor protects cells from infection by viruses that exclusively use the targeted coreceptor. We have used zinc-finger nucleases to drive the simultaneous genetic modification of both ccr5 and cxcr4 in primary human CD4(+) T cells. These gene-modified cells proliferated normally and were resistant to both CCR5- and CXCR4-using HIV-1 in vitro. When introduced into a humanized mouse model of HIV-1 infection, these coreceptor negative cells engraft and traffic normally, and are protected from infection with CCR5- and CXCR4-using HIV-1 strains. These data suggest that simultaneous disruption of the HIV coreceptors may provide a useful approach for the long-term, drug-free treatment of established HIV-1 infections.


Cancer Research | 2013

Novel Recombinant Human B7-H4 Antibodies Overcome Tumoral Immune Escape to Potentiate T-Cell Antitumor Responses

Denarda Dangaj; Evripidis Lanitis; Aizhi Zhao; Shree Joshi; Yi Cheng; Raphael Sandaltzopoulos; Hyun-Jeong Ra; Gwenn Danet-Desnoyers; Daniel J. Powell; Nathalie Scholler

B7-H4 (VTCN1, B7x, B7s) is a ligand for inhibitory coreceptors on T cells implicated in antigenic tolerization. B7-H4 is expressed by tumor cells and tumor-associated macrophages (TAM), but its potential contributions to tumoral immune escape and therapeutic targeting have been less studied. To interrogate B7-H4 expression on tumor cells, we analyzed fresh primary ovarian cancer cells collected from patient ascites and solid tumors, and established cell lines before and after in vivo passaging. B7-H4 expression was detected on the surface of all fresh primary human tumors and tumor xenotransplants, but not on most established cell lines, and B7-H4 was lost rapidly by tumor xenograft cells after short-term in vitro culture. These results indicated an in vivo requirement for B7-H4 induction and defined conditions for targeting studies. To generate anti-B7-H4-targeting reagents, we isolated antibodies by differential cell screening of a yeast-display single-chain fragments variable (scFv) library derived from patients with ovarian cancer. We identified anti-B7-H4 scFv that reversed in vitro inhibition of CD3-stimulated T cells by B7-H4 protein. Notably, these reagents rescued tumor antigen-specific T-cell activation, which was otherwise inhibited by coculture with antigen-loaded B7-H4+ APCs, B7-H4+ tumor cells, or B7-H4- tumor cells mixed with B7-H4+ TAMs; peritoneal administration of anti-B7-H4 scFv delayed the growth of established tumors. Together, our findings showed that cell surface expression of B7-H4 occurs only in tumors in vivo and that antibody binding of B7-H4 could restore antitumor T-cell responses. We suggest that blocking of B7-H4/B7-H4 ligand interactions may represent a feasible therapeutic strategy for ovarian cancer.


Cancer Discovery | 2017

Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism

Thomas Farge; Estelle Saland; Fabienne De Toni; Nesrine Aroua; Moshen Hosseini; Robin Perry; Claudie Bosc; Mayumi Sugita; Lucille Stuani; Marine Fraisse; Sarah Scotland; Clément Larrue; Héléna Boutzen; Virginie Féliu; Marie-Laure Nicolau-Travers; Stephanie Cassant-Sourdy; Nicolas Broin; Marion David; Nizar Serhan; Audrey Sarry; Suzanne Tavitian; Tony Kaoma; Laurent Vallar; Jason Iacovoni; Laetitia Karine Linares; Camille Montersino; Rémy Castellano; Emmanuel Griessinger; Yves Collette; Olivier Duchamp

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Nature Communications | 2017

Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge

Norbert Pardi; Anthony Secreto; Xiaochuan Shan; Fotini Debonera; Joshua Glover; Yanjie Yi; Hiromi Muramatsu; Houping Ni; Barbara L. Mui; Ying K. Tam; Farida Shaheen; Ronald G. Collman; Katalin Karikó; Gwenn Danet-Desnoyers; Thomas D. Madden; Michael J. Hope; Drew Weissman

Monoclonal antibodies are one of the fastest growing classes of pharmaceutical products, however, their potential is limited by the high cost of development and manufacturing. Here we present a safe and cost-effective platform for in vivo expression of therapeutic antibodies using nucleoside-modified mRNA. To demonstrate feasibility and protective efficacy, nucleoside-modified mRNAs encoding the light and heavy chains of the broadly neutralizing anti-HIV-1 antibody VRC01 are generated and encapsulated into lipid nanoparticles. Systemic administration of 1.4 mg kg−1 of mRNA into mice results in ∼170 μg ml−1 VRC01 antibody concentrations in the plasma 24 h post injection. Weekly injections of 1 mg kg−1 of mRNA into immunodeficient mice maintain trough VRC01 levels above 40 μg ml−1. Most importantly, the translated antibody from a single injection of VRC01 mRNA protects humanized mice from intravenous HIV-1 challenge, demonstrating that nucleoside-modified mRNA represents a viable delivery platform for passive immunotherapy against HIV-1 with expansion to a variety of diseases.


PLOS ONE | 2008

Distinct effects of IL-18 on the engraftment and function of human effector CD8 T cells and regulatory T cells.

Richard G. Carroll; Carmine Carpenito; Xiaochuan Shan; Gwenn Danet-Desnoyers; Ronghua Liu; Shuguang Jiang; Steven M. Albelda; Tatiana N. Golovina; George Coukos; James L. Riley; Zdenka L. Jonak; Carl H. June

IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Rα was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies.


Blood | 2014

OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues

Mark Wunderlich; Ryan Brooks; Rushi Panchal; Garrett Rhyasen; Gwenn Danet-Desnoyers; James C. Mulloy

Immunodeficient mice are now readily engrafted with human hematopoietic cells. However, these mice are susceptible to graft-versus-host disease (GVHD) induced by the engraftment and rapid expansion of coinjected human T cells. Therefore, highly purified sample populations must be used, adding significant time, expense, and effort. Here, we have explored in vivo and in vitro methods utilizing anti-T-cell antibodies to circumvent this problem. Intraperitoneal injection of the antibody within 48 hours prevented GVHD. Alternatively, short-term in vitro incubation of cells with antibody immediately before transplant was equally effective. Although in vitro antithymocyte globulin treatment resulted in a dramatic loss of SCID-repopulating cells (SRCs), treatment with OKT3 or UCHT1 abrogated GVHD risk and preserved engraftment potential. Leukemia samples that presented with substantial human T-cell contamination were effectively rescued from GVHD. In addition, OKT3 treatment of unfractionated cord blood resulted in robust engraftment of primary and secondary mice that was indistinguishable from grafts obtained using purified CD34(+) cells. Limiting dilution analysis of unfractionated blood demonstrated a SRC frequency of 1 in 300 to 500 CD34(+) cells, similar to that of purified hematopoietic stem and progenitor cells. This protocol streamlines xenograft studies while significantly reducing the cost and time of the procedure.


Blood Cancer Journal | 2017

Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies.

E.C Pietsch; J Dong; R Cardoso; X Zhang; D Chin; R Hawkins; T Dinh; M Zhou; B Strake; P.H Feng; M Rocca; C.D Santos; X Shan; Gwenn Danet-Desnoyers; F Shi; E Kaiser; H.J Millar; S Fenton; R Swanson; J.A Nemeth; R.M. Attar

CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices.

Collaboration


Dive into the Gwenn Danet-Desnoyers's collaboration.

Top Co-Authors

Avatar

Xiaochuan Shan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Martin Carroll

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anthony Secreto

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Carl H. June

National Marrow Donor Program

View shared research outputs
Top Co-Authors

Avatar

Cedric Dos Santos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James L. Riley

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun-Jeong Ra

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Joshua Glover

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge