Gwennou Coupier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gwennou Coupier.
Physics of Fluids | 2008
Gwennou Coupier; Badr Kaoui; Thomas Podgorski; Chaouqi Misbah
Cross-streamline noninertial migration of a vesicle in a bounded Poiseuille flow is investigated experimentally and numerically. The combined effects of the walls and of the curvature of the velocity profile induce a movement toward the center of the channel. A migration law (as a function of relevant structural and flow parameters) is proposed that is consistent with experimental and numerical results. This similarity law markedly differs from its analog in unbounded geometry. The dependency on the reduced volume ν and viscosity ratio λ is also discussed. In particular, the migration velocity becomes nonmonotonous as a function of ν beyond a certain λ.
EPL | 2008
Natacha Callens; Christophe Minetti; Gwennou Coupier; M.-A. Mader; Frank Dubois; Chaouqi Misbah; Thomas Podgorski
The dynamics of a vesicle suspension in a shear flow between parallel plates has been investigated under microgravity conditions, where vesicles are only submitted to hydrodynamic effects such as lift forces due to the presence of walls and drag forces. The temporal evolution of the spatial distribution of the vesicles has been recorded thanks to digital holographic microscopy, during parabolic flights and under normal gravity conditions. The collected data demonstrates that vesicles are pushed away from the walls with a lift velocity proportional to , where is the shear rate, R the vesicle radius and z its distance from the wall. This scaling as well as the dependence of the lift velocity upon the vesicle aspect ratio are consistent with the theoretical predictions by Olla (J. Phys. II 7 (1997) 1533).
Journal of Fluid Mechanics | 2011
Vincent Doyeux; Thomas Podgorski; Sarah Peponas; Mourad Ismail; Gwennou Coupier
The problem of the splitting of a suspension in bifurcating channels divided into two branches of non-equal flow rates is addressed. As has long been observed, in particular in blood flow studies, the volume fraction of particles generally increases in the high-flow-rate branch and decreases in the low-flow-rate branch. In the literature, this phenomenon is sometimes interpreted as the result of some attraction of the particles towards this high-flow-rate branch. In this paper, we focus on the existence of such an attraction through microfluidic experiments and two-dimensional simulations and show clearly that such an attraction does not occur but is, on the contrary, directed towards the low-flow-rate branch. Arguments for this attraction are given and a discussion on the sometimes misleading arguments found in the literature is given. Finally, the enrichment of particles in the high-flow-rate branch is shown to be mainly a consequence of the initial distribution in the inlet branch, which shows necessarily some depletion near the walls.
Scientific Reports | 2015
Matthias Brust; Othmane Aouane; Marine Thiébaud; Daniel Flormann; Claude Verdier; Lars Kaestner; Matthias W. Laschke; Hassib Selmi; Abdellilah Benyoussef; Thomas Podgorski; Gwennou Coupier; Chaouqi Misbah; Christian Wagner
The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.
Physical Review Letters | 2012
Gwennou Coupier; Alexander Farutin; Christophe Minetti; Thomas Podgorski; Chaouqi Misbah
Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes-which are classified as bullet, croissant, and parachute-in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.
Physical Review Letters | 2013
Xavier Grandchamp; Gwennou Coupier; Aparna Srivastav; Christophe Minetti; Thomas Podgorski
The distribution of red blood cells (RBCs) in a confined channel flow is inhomogeneous and shows a marked depletion near the walls due to a competition between migration away from the walls and shear-induced diffusion resulting from interactions between particles. We investigated the lift of RBCs in a shear flow near a wall and measured a significant lift velocity despite the tumbling motion of cells. We also provide values for the collective and anisotropic shear-induced diffusion of a cloud of RBCs, both in the direction of shear and in the direction of vorticity. A generic down-gradient subdiffusion characterized by an exponent 1/3 is highlighted.
Microvascular Research | 2016
Z Zaiyi Shen; Gwennou Coupier; Badr Kaoui; Benoît Polack; Jdr Jens Harting; Chaouqi Misbah; Thomas Podgorski
Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions.
EPL | 2007
Gwennou Coupier; M. Saint Jean; Claudine Guthmann
We show that the diffusion of a single file of particles moving in a fluctuating modulated quasi-1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favoured by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by patterns of pinning sites.
Microfluidics and Nanofluidics | 2012
Aparna Srivastav; Thomas Podgorski; Gwennou Coupier
Pinched flow fractionation is shown to be an efficient and selective way to quickly separate particles by size in a very polydisperse semi-concentrated suspension. In an effort to optimize the method, we discuss the quantitative influence of the pinching intensity in the balance between the requirements of selectivity and minimal dilution.
Soft Matter | 2016
Viviana Claveria; Othmane Aouane; Marine Thiébaud; Manouk Abkarian; Gwennou Coupier; Chaouqi Misbah; Thomas John; Christian Wagner
We present experiments on RBCs that flow through micro-capillaries under physiological conditions. The strong flow-shape coupling of these deformable objects leads to a rich variety of cluster formation. We show that the RBC clusters form as a subtle imbrication between hydrodynamic interactions and adhesion forces because of plasma proteins, mimicked by the polymer dextran. Clusters form along the capillaries and macromolecule-induced adhesion contributes to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes stronger. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles capture the transition between adhesive and non-adhesive clusters at different flow velocities.