Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwi Ran Kim is active.

Publication


Featured researches published by Gwi Ran Kim.


Vascular Pharmacology | 2015

Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes.

Sin Young Choi; Yuhee Ryu; Hae Jin Kee; Soo-Na Cho; Gwi Ran Kim; Jae Yeong Cho; Hyung-Seok Kim; Inkyeom Kim; Myung Ho Jeong

Inflammation and fibrosis are implicated in the pathogenesis of hypertensive kidney damage. We previously demonstrated that a nonspecific histone deacetylase (HDAC) inhibitor attenuates cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats, which induces HDAC6 protein and enzymatic activity. However, the HDAC inhibitors effect and mechanism have not yet been demonstrated. We sought to determine whether an HDAC6-selective inhibitor could treat hypertension and kidney damage in angiotensin II-infused mice. Hypertension was induced by infusion of ANG in mice. Tubastatin A, an HDAC6 selective inhibitor, did not regulate blood pressure. Hypertensive stimuli enhanced the expression of HDAC6 in vivo and in vitro. We showed that the inhibition of HDAC6 prevents fibrosis and inflammation as determined by quantitative real-time PCR, western blot, and immunohistochemistry. Small interfering RNA (siRNA) against HDAC6 or Smad3 attenuated hypertensive stimuli-induced fibrosis and inflammation, whereas Smad2 siRNA failed to inhibit fibrosis. Interestingly, the combination of the HDAC6 inhibitor and Smad3 knockdown synergistically blocked transforming growth factor β (TGF-β) or ANG-induced fibrosis. We also demonstrated for the first time, to our knowledge, that acetylation of collagen type I can be regulated by HDAC6/p300 acetyltransferase. The chromatin immunoprecipitation assay revealed that the HDAC6 inhibitor suppressed TGF-β-induced acetylated histone H4 or phospho-Smad2/3 to Smad3 binding elements in the fibrosis-associated gene promoters including collagen type I. These results suggest that HDAC6 may be a valuable therapeutic target for the treatment of hypertension-induced kidney fibrosis and inflammation.


Korean Circulation Journal | 2014

miR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4

Hae Jin Kee; Gwi Ran Kim; Soo-Na Cho; Jin-Sook Kwon; Youngkeun Ahn; Hyun Kook; Myung Ho Jeong

Background and Objectives Differentiation and de-differentiation of vascular smooth muscle cells (VSMCs) are important events in atherosclerosis and restenosis after angioplasty. MicroRNAs are considered a key regulator in cellular processes such as differentiation, proliferation, and apoptosis. Here, we report the role of new miR-18a-5p microRNA and its downstream target genes in VSMCs and in a carotid balloon injury model. Materials and Methods Expression of miR-18a-5p and its candidate genes was examined in VSMCs and in a carotid artery injury model by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and microRNA microarray analysis. VSMC differentiation marker genes including smooth muscle (SM) α-actin and SM22α were determined by Western blot, qRT-PCR, and a SM22α promoter study. Gene overexpression or knockdown was performed in VSMCs. Results miR-18a-5p was upregulated in the rat carotid artery at the early time after balloon injury. Transfection of the miR-18a-5p mimic promoted the VSMC differentiation markers SM α-actin and SM22α. In addition, miR-18a-5p expression was induced in differentiated VSMCs, whereas it decreased in de-differentiated VSMCs. We identified syndecan4 as a downstream target of miR-18-5p in VSMCs. Overexpression of syndecan4 decreased Smad2 expression, whereas knockdown of syndecan4 increased Smad2 expression in VSMCs. Finally, we showed that Smad2 induced the expression of VSMC differentiation marker genes in VSMCs. Conclusion These results indicate that miR-18a-5p is involved in VSMC differentiation by targeting syndecan4.


Scientific Reports | 2016

Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

Yuhee Ryu; Li Jin; Hae Jin Kee; Zhe Hao Piao; Jae Yeong Cho; Gwi Ran Kim; Sin Young Choi; Ming Quan Lin; Myung Ho Jeong

Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway.


Vascular Pharmacology | 2014

Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

Hae Jin Kee; Soo-Na Cho; Gwi Ran Kim; Sin Young Choi; Yuhee Ryu; In Kyeom Kim; Young Joon Hong; Hyung Wook Park; Youngkeun Ahn; Jeong Gwan Cho; Jong Chun Park; Myung Ho Jeong

Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway.


Journal of Hypertension | 2017

Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2

Li Jin; Ming Quan Lin; Zhe Hao Piao; Jae Yeong Cho; Gwi Ran Kim; Sin Young Choi; Yuhee Ryu; Simei Sun; Hae Jin Kee; Myung Ho Jeong

Objective: Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Methods: Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Results: Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. Conclusion: These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.


Molecular Nutrition & Food Research | 2015

Sulforaphane suppresses cardiac hypertrophy by inhibiting GATA4/GATA6 expression and MAPK signaling pathways

Hae Jin Kee; Gwi Ran Kim; In Kyeom Kim; Myung Ho Jeong

SCOPE Sulforaphane (SFN) is a naturally occurring isothiocynate compound found in cruciferous vegetables. Here, we report the effect of SFN on cardiac hypertrophy and propose an underlying mechanism. METHODS AND RESULTS SFN suppresses cardiomyocyte hypertrophy induced by hypertrophic stimuli in vitro and in vivo. SFN suppresses the expression of fetal genes, including atrial natriuretic peptide, brain natriuretic peptide, and beta myosin heavy chain. We used an siRNA technique and atrial natriuretic peptide promoter with mutated GATA binding sites to demonstrate that SFN mediates cardiac hypertrophy by modulating transcription factors GATA4/6. CONCLUSION These results suggest that SFN has the potential to prevent cardiac hypertrophy by downregulating GATA4/6 and mitogen-activated protein kinase signaling pathways.


Scientific Reports | 2017

Gallic Acid Reduces Blood Pressure and Attenuates Oxidative Stress and Cardiac Hypertrophy in Spontaneously Hypertensive Rats

Li Jin; Zhe Hao Piao; Simei Sun; Bin Liu; Gwi Ran Kim; Young Mi Seok; Ming Quan Lin; Yuhee Ryu; Sin Young Choi; Hae Jin Kee; Myung Ho Jeong

Gallic acid (GA) has been reported to have beneficial effects on cancer, vascular calcification, and diabetes-induced myocardial dysfunction. We hypothesized that GA controls hypertension via oxidative stress response regulation in an animal model for essential hypertension. Spontaneously hypertensive rats (SHRs) were administered GA for 16 weeks. GA treatment lowered elevated systolic blood pressure in SHRs through the inhibition of vascular contractility and components of the renin-angiotensin II system. In addition, GA administration reduced aortic wall thickness and body weight in SHRs. In SHRs, GA attenuated left ventricular hypertrophy and reduced the expression of cardiac-specific transcription factors. NADPH oxidase 2 (Nox2) and GATA4 mRNA expression was induced in SHR hearts and angiotensin II-treated H9c2 cells; this expression was downregulated by GA treatment. Nox2 promoter activity was increased by the synergistic action of GATA4 and Nkx2-5. GA seems to regulate oxidative stress by inhibiting the DNA binding activity of GATA4 in the rat Nox2 promoter. GA reduced the GATA4-induced Nox activity in SHRs and angiotensin II-treated H9c2 cells. GA administration reduced the elevation of malondialdehyde levels in heart tissue obtained from SHRs. These findings suggest that GA is a potential therapeutic agent for treating cardiac hypertrophy and oxidative stress in SHRs.


Journal of Hypertension | 2016

Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension.

Gwi Ran Kim; Soo-Na Cho; Hyung-Seok Kim; Seon Young Yu; Sin Young Choi; Yuhee Ryu; Ming Quan Lin; Li Jin; Hae Jin Kee; Myung Ho Jeong

Objective: Histone deacetylase (HDAC) inhibitors have been reported to improve essential and secondary hypertension. However, the specific HDAC that might serve as a therapeutic target and the associated upstream and downstream molecules involved in regulating hypertension remain unknown. Our study was aimed at investigating whether a selective inhibitor of class II HDAC (MC1568) modulates hypertension, elucidating the underlying mechanism. Methods: Hypertension was established by administering angiotensin II (Ang II) to mice before treatment with MC1568. SBP was measured. Results: Treatment with MC1568 reduced elevated SBP; attenuated arterial remodeling in the kidneys small arteries and thoracic aorta; and inhibited cell cycle regulatory gene expression, vascular smooth muscle cell (VSMC) proliferation, DNA synthesis, and VSMC hypertrophy in vivo and in vitro. Ang II enhanced the expression of phosphorylated HDAC4 and GATA-binding factor 6 (GATA6) proteins, which were specifically localized in the cytoplasm of cells in the arteries of kidneys and in aortas. Forced expression and knockdown of HDAC4 increased and decreased, respectively, the proliferation and expression of cell cycle genes in VSMCs. GATA6, a newly described binding partner of HDAC4, markedly enhanced the size and number of VSMCs. Calcium2+/calmodulin-dependent kinase II&agr; (CaMKII&agr;), but not HDAC4, translocated from the nucleus to the cytoplasm in response to Ang II. CaMKII&agr; and protein kinase D1 were associated with VSMC hypertrophy and hyperplasia via direct interaction with HDAC4. MC1568 treatment weakened the association between HDAC4 and CaMKII&agr;. Conclusion: These results suggest that class II HDAC inhibition attenuates hypertension by negatively regulating VSMC hypertrophy and hyperplasia via the CaMKII&agr;/protein kinase D1/HDAC4/GATA6 pathway.


Journal of Cellular and Molecular Medicine | 2016

Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells

Sin Y. Choi; Hae J. Kee; Thomas Kurz; Finn K. Hansen; Yuhee Ryu; Gwi Ran Kim; Ming Q. Lin; Li Jin; Zhe Hao Piao; Myung Ho Jeong

Epithelial‐mesenchymal transition (EMT) and renal fibrosis are closely involved in chronic kidney disease. Inhibition of histone deacetylase (HDAC) has an anti‐fibrotic effect in various diseases. However, the pathophysiological role of isoform‐specific HDACs or class‐selective HDACs in renal fibrosis remains unknown. Here, we investigated EMT markers and extracellular matrix (ECM) proteins in a human proximal tubular cell line (HK‐2) by using HDAC inhibitors or by knockdown of class I HDACs (HDAC1, 2, 3 and 8). Trichostatin A (TSA), MS275, PCI34051 and LMK235 inhibited ECM proteins such as collagen type I or fibronectin in transforming growth factor β1 (TGF‐β1)‐induced HK2 cells. However, restoration of TGF‐β1‐induced E‐cadherin down‐regulation was only seen in HK‐2 cells treated with TSA or MS275, but not with PCI34051, whereas TGF‐β1‐induced N‐cadherin expression was not affected by the inhibitors. ECM protein and EMT marker levels were prevented or restored by small interfering RNA transfection against HDAC8, but not against other class I HDACs (HDAC1, 2 and 3). E‐cadherin regulation is mediated by HDAC8 expression, but not by HDAC8 enzyme activity. Thus, class I HDACs (HDAC1, 2, 3 and 8) play a major role in regulating ECM and EMT, whereas class IIa HDACs (HDAC4 and 5) are less effective.


PLOS ONE | 2016

Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling

Sin Young Choi; Zhe Hao Piao; Li Jin; Jung Ha Kim; Gwi Ran Kim; Yuhee Ryu; Ming Quan Lin; Hyung-Seok Kim; Hae Jin Kee; Myung Ho Jeong

Piceatannol, a resveratrol metabolite, is a phenolic compound found in red wine and grapes. We investigated the effect of piceatannol on renal fibrosis and histone deacetylase (HDAC) expression in a mouse model of unilateral ureteral obstruction (UUO). Fibrosis was established by UUO and piceatannol was intraperitoneally injected for 2 weeks. Piceatannol suppressed extracellular matrix (ECM) protein deposition including collagen type I and fibronectin as well as connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) in UUO kidneys. However, the expressions of epithelial-mesenchymal transition (EMT) marker genes, such as N-cadherin and E-cadherin, were not changed in the kidneys after UUO. Masson’s trichrome staining and fluorescence immunostaining showed that piceatannol administration attenuated collagen deposition in UUO kidneys. HDAC1, HDAC4, HDAC5, HDAC6, and HDAC10 protein expression was upregulated in UUO kidneys, whereas that of HDAC8 was downregulated. Piceatannol treatment significantly reduced HDAC4 and HDAC5 protein expression. Further, piceatannol attenuated phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) in UUO kidneys, but not that of transforming growth factor beta1-Smad2/3. These results suggest that class I HDACs and class IIa/b HDACs are involved in renal fibrosis development. Piceatannol may be a beneficial therapeutic agent for treating renal fibrosis via reduction of HDAC4 and HDAC5 protein expression or suppression of the p38-MAPK signaling pathway.

Collaboration


Dive into the Gwi Ran Kim's collaboration.

Top Co-Authors

Avatar

Myung Ho Jeong

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hae Jin Kee

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Yuhee Ryu

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Sin Young Choi

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simei Sun

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyung-Seok Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge