Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwyndaf Evans is active.

Publication


Featured researches published by Gwyndaf Evans.


Nature Structural & Molecular Biology | 2012

A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

Xiangxi Wang; Wei Peng; Jingshan Ren; Zhongyu Hu; Jiwei Xu; Zhiyong Lou; Xumei Li; Weidong Yin; Xinliang Shen; Claudine Porta; Thomas S. Walter; Gwyndaf Evans; Danny Axford; Robin L. Owen; David J. Rowlands; Junzhi Wang; David I. Stuart; Elizabeth E. Fry; Zihe Rao

Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In contrast, the empty particles are markedly expanded and resemble elusive enterovirus-uncoating intermediates not previously characterized in atomic detail. Hydrophobic pockets in the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. These structures provide a model for enterovirus uncoating in which the VP1 GH loop acts as an adaptor-sensor for cellular receptor attachment, converting heterologous inputs to a generic uncoating mechanism, highlighting new opportunities for therapeutic intervention.


Journal of Applied Crystallography | 2001

CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra

Gwyndaf Evans; R. F. Pettifer

A Fortran program CHOOCH, which derives experimental values of the anomalous-scattering factors f′′ and f′ from X-ray fluorescence spectra, is described. The program assumes knowledge of theoretical values for the imaginary term, f′′, of the anomalous-scattering factor away from the absorption edge to scale the experimental fluorescence spectrum and thus derive values of f′′ near the absorption edge, where tabular data are inappropriate. The Kramers–Kronig relation is used to calculate the real part, f′, of the anomalous-scattering factor. The program aids the decision-making process in macromolecular crystallographic experiments where optimal wavelength selection is required. Magnitudes of f′ and f′′ at selected wavelengths can later be used as starting values for heavy-atom refinement with crystallographic phasing programs.


Nature | 2004

Vinculin activation by talin through helical bundle conversion

Tina Izard; Gwyndaf Evans; Robert A. Borgon; Christina L. Rush; Gérard Bricogne; Philippe R.J. Bois

Vinculin is a conserved component and an essential regulator of both cell–cell (cadherin-mediated) and cell–matrix (integrin–talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to α-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of α-actinin to also bind to Vh and displace Vt from pre-existing Vh–Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talins effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.


Journal of Synchrotron Radiation | 2006

The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results

Gerd Rosenbaum; R. W. Alkire; Gwyndaf Evans; F. J. Rotella; Krzystof Lazarski; Rongguang Zhang; Stephan L. Ginell; N. E. C. Duke; Istvan Naday; Jack Lazarz; Michael Molitsky; Lisa J. Keefe; John Gonczy; Larry Rock; Ruslan Sanishvili; Martin A. Walsh; Edwin M. Westbrook; Andrzej Joachimiak

The 19ID undulator beamline of the Structure Biology Center has been designed and built to take full advantage of the high flux, brilliance and quality of X-ray beams delivered by the Advanced Photon Source. The beamline optics are capable of delivering monochromatic X-rays with photon energies from 3.5 to 20 keV (3.5-0.6 A wavelength) with fluxes up to 8-18 x 10(12) photons s(-1) (depending on photon energy) onto cryogenically cooled crystal samples. The size of the beam (full width at half-maximum) at the sample position can be varied from 2.2 mm x 1.0 mm (horizontal x vertical, unfocused) to 0.083 mm x 0.020 mm in its fully focused configuration. Specimen-to-detector distances of between 100 mm and 1500 mm can be used. The high flexibility, inherent in the design of the optics, coupled with a kappa-geometry goniometer and beamline control software allows optimal strategies to be adopted in protein crystallographic experiments, thus maximizing the chances of their success. A large-area mosaic 3 x 3 CCD detector allows high-quality diffraction data to be measured rapidly to the crystal diffraction limits. The beamline layout and the X-ray optical and endstation components are described in detail, and the results of representative crystallographic experiments are presented.


Biochimica et Biophysica Acta | 2014

Membrane protein structure determination - the next generation.

Isabel Moraes; Gwyndaf Evans; Juan Sanchez-Weatherby; Simon Newstead; Patrick D. Shaw Stewart

The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.


Nature | 2016

Structure of photosystem II and substrate binding at room temperature.

Iris D. Young; Mohamed Ibrahim; Ruchira Chatterjee; Sheraz Gul; Franklin Fuller; Sergey Koroidov; Aaron S. Brewster; Rosalie Tran; Roberto Alonso-Mori; Thomas Kroll; Tara Michels-Clark; Hartawan Laksmono; Raymond G. Sierra; Claudiu A. Stan; Rana Hussein; Miao Zhang; Lacey Douthit; Markus Kubin; Casper de Lichtenberg; Long Vo Pham; Håkan Nilsson; Mun Hon Cheah; Dmitriy Shevela; Claudio Saracini; Mackenzie A. Bean; Ina Seuffert; Dimosthenis Sokaras; Tsu-Chien Weng; Ernest Pastor; Clemens Weninger

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.


Acta Crystallographica Section D-biological Crystallography | 1999

Taking MAD to the extreme: ultrafast protein structure determination

Martin A. Walsh; Irene Dementieva; Gwyndaf Evans; Ruslan Sanishvili; Andrzej Joachimiak

Multiwavelength anomalous diffraction data were measured in 23 min from a 16 kDa selenomethionyl substituted protein, producing experimental phases to 2.25 A resolution. The data were collected on a mosaic 3 x 3 charge-coupled device using undulator radiation from the Structural Biology Center 19ID beamline at the Argonne National Laboratorys Advanced Photon Source. The phases were independently obtained semiautomatically by two crystallographic program suites, CCP4 and CNS. The quality and speed of this data acquisition exemplify the opportunities at third-generation synchrotron sources for high-throughput protein crystal structure determination.


Acta Crystallographica Section D-biological Crystallography | 2012

In situ macromolecular crystallography using microbeams

Danny Axford; Robin L. Owen; Jun Aishima; James Foadi; Ann W. Morgan; James I. Robinson; Joanne E. Nettleship; Raymond J. Owens; Isabel Moraes; Elizabeth E. Fry; Jonathan M. Grimes; Karl Harlos; Abhay Kotecha; Jingshan Ren; Geoff Sutton; Thomas S. Walter; David I. Stuart; Gwyndaf Evans

A sample environment for mounting crystallization trays has been developed on the microfocus beamline I24 at Diamond Light Source. The technical developments and several case studies are described.


Acta Crystallographica Section D-biological Crystallography | 2013

Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography.

James Foadi; Pierre Aller; Yilmaz Alguel; Alexander D. Cameron; Danny Axford; Robin L. Owen; Wes Armour; David G. Waterman; So Iwata; Gwyndaf Evans

A systematic approach to the scaling and merging of data from multiple crystals in macromolecular crystallography is introduced and explained.


The EMBO Journal | 2010

How baculovirus polyhedra fit square pegs into round holes to robustly package viruses

Xiaoyun Ji; Geoff Sutton; Gwyndaf Evans; Danny Axford; Robin L. Owen; David I. Stuart

Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross‐braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra‐molecular assembly to specifically entrap massive baculoviruses. Inter‐subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insects gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re‐selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano‐particles.

Collaboration


Dive into the Gwyndaf Evans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Waterman

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

James M. Parkhurst

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Gildea

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Foadi

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas K. Sauter

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Luis Fuentes-Montero

Autonomous University of Chihuahua

View shared research outputs
Researchain Logo
Decentralizing Knowledge