Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gyanendra Tripathi is active.

Publication


Featured researches published by Gyanendra Tripathi.


Journal of Inflammation | 2010

Elevated endotoxin levels in non-alcoholic fatty liver disease

A. L. Harte; Nancy F. da Silva; S. J. Creely; K. C. McGee; Thomas Billyard; Elham M Youssef-Elabd; Gyanendra Tripathi; Esmat Ashour; Mohga S Abdalla; Hayat M. Sharada; Ashraf I Amin; Alastair D. Burt; S. Kumar; Christopher P. Day; Philip G. McTernan

BackgroundEmerging data indicate that gut-derived endotoxin may contribute to low-grade systemic inflammation in insulin resistant states. This study aimed to examine the importance of serum endotoxin and inflammatory markers in non-alcoholic fatty liver disease (NAFLD) patients, with and without type 2 diabetes mellitus (T2DM), and to explore the effect of treatment with a lipase inhibitor, Orlistat, on their inflammatory status.MethodsFasted serum from 155 patients with biopsy proven NAFLD and 23 control subjects were analysed for endotoxin, soluble CD14 (sCD14), soluble tumour necrosis factor receptor II (sTNFRII) and various metabolic parameters. A subgroup of NAFLD patients were re-assessed 6 and 12 months after treatment with diet alone (n = 6) or diet plus Orlistat (n = 8).ResultsEndotoxin levels were significantly higher in patients with NAFLD compared with controls (NAFLD: 10.6(7.8, 14.8) EU/mL; controls: 3.9(3.2, 5.2) EU/mL, p < 0.001); NAFLD alone produced comparable endotoxin levels to T2DM (NAFLD: T2DM: 10.6(5.6, 14.2) EU/mL; non-diabetic: 10.6(8.5, 15.2) EU/mL), whilst a significant correlation between insulin resistance and serum endotoxin was observed (r = 0.27, p = 0.008). Both sCD14 (p < 0.01) and sTNFRII (p < 0.001) increased with severity of fibrosis. A positive correlation was also noted between sTNFRII and sCD14 in the NAFLD subjects (r = 0.29, p = 0.004).Sub-cohort treatment with Orlistat in patients with NAFLD showed significant decreases in ALT (p = 0.006), weight (p = 0.005) and endotoxin (p = 0.004) compared with the NAFLD, non-Orlistat treated control cohort at 6 and 12 months post therapy, respectively.ConclusionsEndotoxin levels were considerably increased in NAFLD patients, with marked increases noted in early stage fibrosis compared with controls. These results suggest elevated endotoxin may serve as an early indicator of potential liver damage, perhaps negating the need for invasive liver biopsy. As endotoxin may promote insulin resistance and inflammation, interventions aimed at reducing endotoxin levels in NAFLD patients may prove beneficial in reducing inflammatory burden.


Endocrinology | 2010

Identification of Nesfatin-1 in Human and Murine Adipose Tissue: A Novel Depot-Specific Adipokine with Increased Levels in Obesity

Manjunath Ramanjaneya; Jing Chen; James Brown; Gyanendra Tripathi; Manfred Hallschmid; Suketu Patel; Werner Kern; Edward W. Hillhouse; Hendrik Lehnert; Bee K. Tan; Harpal S. Randeva

Nesfatin-1 is a recently identified anorexigenic peptide derived from its precursor protein, nonesterified fatty acid/nucleobindin 2 (NUCB2). Although the hypothalamus is pivotal for the maintenance of energy homeostasis, adipose tissue plays an important role in the integration of metabolic activity and energy balance by communicating with peripheral organs and the brain via adipokines. Currently no data exist on nesfatin-1 expression, regulation, and secretion in adipose tissue. We therefore investigated NUCB2/nesfatin-1 gene and protein expression in human and murine adipose tissue depots. Additionally, the effects of insulin, dexamethasone, and inflammatory cytokines and the impact of food deprivation and obesity on nesfatin-1 expression were studied by quantitative RT-PCR and Western blotting. We present data showing NUCB2 mRNA (P < 0.001), nesfatin-1 intracellular protein (P < 0.001), and secretion (P < 0.01) were significantly higher in sc adipose tissue compared with other depots. Also, nesfatin-1 protein expression was significantly increased in high-fat-fed mice (P < 0.01) and reduced under food deprivation (P < 0.01) compared with controls. Stimulation of sc adipose tissue explants with inflammatory cytokines (TNFalpha and IL-6), insulin, and dexamethasone resulted in a marked increase in intracellular nesfatin-1 levels. Furthermore, we present evidence that the secretion of nesfatin-1 into the culture media was dramatically increased during the differentiation of 3T3-L1 preadipocytes into adipocytes (P < 0.001) and after treatments with TNF-alpha, IL-6, insulin, and dexamethasone (P < 0.01). In addition, circulating nesfatin-1 levels were higher in high-fat-fed mice (P < 0.05) and showed positive correlation with body mass index in human. We report that nesfatin-1 is a novel depot specific adipokine preferentially produced by sc tissue, with obesity- and food deprivation-regulated expression.


The EMBO Journal | 2002

Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans

Gyanendra Tripathi; Carolyn Wiltshire; Susan Macaskill; Hélène Tournu; Susan Budge; Alistair J. P. Brown

Candida albicans is a major fungal pathogen of humans. It regulates its morphology in response to various environmental signals, but many of these signals are poorly defined. We show that amino acid starvation induces filamentous growth in C.albicans. Also, starvation for a single amino acid (histidine) induces CaHIS4, CaHIS7, CaARO4, CaLYS1 and CaLYS2 gene expression in a manner reminiscent of the GCN response in Saccharomyces cerevisiae. These morphogenetic and GCN‐like responses are both dependent upon CaGcn4, which is a functional homologue of S.cerevisiae Gcn4. Like ScGcn4, CaGcn4 activates the transcription of amino acid biosynthetic genes via the GCRE element, and CaGcn4 confers resistance to the histidine analogue, 3‐aminotriazole. CaGcn4 interacts with the Ras‐cAMP pathway to promote filamentous growth, but the GCN‐like response is not dependent upon morphogenetic signalling. CaGcn4 acts as a global regulator in C.albicans, co‐ordinating both metabolic and morphogenetic responses to amino acid starvation.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice.

Dervis A. M. Salih; Gyanendra Tripathi; Cathy Holding; Tadge Szestak; M. Ivelisse Gonzalez; Emma J. Carter; Laura J. Cobb; Joan E. Eisemann; Jennifer M. Pell

The insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members. Therefore, to reveal Igfbp5 actions in vivo, we generated lines of transgenic mice that ubiquitously overexpressed Igfbp5 from early development. Significantly increased neonatal mortality, reduced female fertility, whole-body growth inhibition, and retarded muscle development were observed in Igfbp5-overexpressing mice. The magnitude of the response in individual transgenic lines was positively correlated with Igfbp5 expression. Circulating IGFBP-5 concentrations increased a maximum of only 4-fold, total and free IGF-I concentrations increased up to 2-fold, and IGFBP-5 was detected in high Mr complexes; however, no detectable decrease in the proportion of free IGF-I was observed. Thus, despite only modest changes in IGF and IGFBP concentrations, the Igfbp5-overexpressing mice displayed a phenotype more extreme than that observed for other Igfbp genetic models. Although growth retardation was obvious prenatally, maximal inhibition occurred postnatally before the onset of growth hormone-dependent growth, regardless of Igfbp5 expression level, revealing a period of sensitivity to IGFBP-5 during this important stage of tissue programming.


Diabetes Care | 2012

High Fat Intake Leads to Acute Postprandial Exposure to Circulating Endotoxin in Type 2 Diabetic Subjects

A. L. Harte; Madhusudhan C. Varma; Gyanendra Tripathi; K. C. McGee; Nasser M. Al-Daghri; Omar S. Al-Attas; Shaun Sabico; J. P. O'Hare; Antonio Ceriello; Ponnusamy Saravanan; S. Kumar; Philip G. McTernan

OBJECTIVE To evaluate the changes in circulating endotoxin after a high–saturated fat meal to determine whether these effects depend on metabolic disease state. RESEARCH DESIGN AND METHODS Subjects (n = 54) were given a high-fat meal (75 g fat, 5 g carbohydrate, 6 g protein) after an overnight fast (nonobese control [NOC]: age 39.9 ± 11.8 years [mean ± SD], BMI 24.9 ± 3.2 kg/m2, n = 9; obese: age 43.8 ± 9.5 years, BMI 33.3 ± 2.5 kg/m2, n = 15; impaired glucose tolerance [IGT]: age 41.7 ± 11.3 years, BMI 32.0 ± 4.5 kg/m2, n = 12; type 2 diabetic: age 45.4 ± 10.1 years, BMI 30.3 ± 4.5 kg/m2, n = 18). Blood was collected before (0 h) and after the meal (1–4 h) for analysis. RESULTS Baseline endotoxin was significantly higher in the type 2 diabetic and IGT subjects than in NOC subjects, with baseline circulating endotoxin levels 60.6% higher in type 2 diabetic subjects than in NOC subjects (P < 0.05). Ingestion of a high-fat meal led to a significant rise in endotoxin levels in type 2 diabetic, IGT, and obese subjects over the 4-h time period (P < 0.05). These findings also showed that, at 4 h after a meal, type 2 diabetic subjects had higher circulating endotoxin levels (125.4%↑) than NOC subjects (P < 0.05). CONCLUSIONS These studies have highlighted that exposure to a high-fat meal elevates circulating endotoxin irrespective of metabolic state, as early as 1 h after a meal. However, this increase is substantial in IGT and type 2 diabetic subjects, suggesting that metabolic endotoxinemia is exacerbated after high fat intake. In conclusion, our data suggest that, in a compromised metabolic state such as type 2 diabetes, a continual snacking routine will cumulatively promote their condition more rapidly than in other individuals because of the greater exposure to endotoxin.


Molecular and Cellular Biology | 2004

Akt2, a Novel Functional Link between p38 Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways in Myogenesis

Ivelisse Gonzalez; Gyanendra Tripathi; Emma J. Carter; Laura J. Cobb; Dervis A. M. Salih; Fiona A. Lovett; Cathy Holding; Jennifer M. Pell

ABSTRACT Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.


Journal of Cell Science | 2004

Partitioning of IGFBP-5 actions in myogenesis: IGF- independent anti-apoptotic function

Laura J. Cobb; Dervis A. M. Salih; Ivelisse Gonzalez; Gyanendra Tripathi; Emma J. Carter; Fiona A. Lovett; Cathy Holding; Jennifer M. Pell

Igfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner. WtIGFBP-5, but not mutIGFBP-5, inhibited myogenesis, as assessed by cell morphology, MHC immunocytochemistry and caveolin 3 expression. However, both wt- and mutIGFBP-5 increased cell survival and decreased apoptosis, as indicated by decreased caspase-3 activity and cell surface annexin V binding. Further examination of apoptotic pathways revealed that wt- and mutIGFBP-5 ameliorated the increase in caspase-9 but not the modest increase in caspase-8 during myogenesis, suggesting that IGFBP-5 increased cell survival via inhibition of intrinsic cell death pathways in an IGF-independent manner. The relationship between IGF-II and IGFBP-5 was examined further by cotransfecting C2 myoblasts with antisense Igf2 (previously established to induce increased cell death) and Igfbp5; both wt- and mutIGFBP-5 conferred equivalent protection against the decreased cell survival and increased apoptosis. In conclusion, we have partitioned IGFBP-5 action in myogenesis into IGF-dependent inhibition of differentiation and IGF-independent cell survival. Our findings suggest that, by regulation of cell survival, IGFBP-5 has an autonomous role in the regulation of cell fate in development and in tumourigenesis.


American Journal of Physiology-endocrinology and Metabolism | 2014

The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes.

Milan K. Piya; A. L. Harte; Kavitha Sivakumar; Gyanendra Tripathi; Philip Voyias; Sean James; Shaun Sabico; Nasser M. Al-Daghri; Ponnusamy Saravanan; Thomas M. Barber; S. Kumar; Manu Vatish; Philip G. McTernan

Peripheral action of irisin improves glucose homeostasis and increases energy expenditure, with no data on a central role of irisin in metabolism. These studies sought to examine 1) presence of irisin in human cerebrospinal fluid (CSF) and banked human hypothalamic tissue, 2) serum irisin in maternal subjects across varying adiposities with or without gestational diabetes (GDM), and 3) their respective neonate offspring. CSF, serum, and neonatal cord serum were collected from 91 pregnant women with and without GDM attending for an elective cesarean section [body mass index (BMI): 37.7 ± 7.6 kg/m(2); age: 32 ± 8.3 yr]. Irisin was assessed by ELISA and correlated with biochemical and anthropometric data. Irisin expression was examined in human hypothalamus by immunohistochemical staining. Serum irisin in pregnant women was significantly lower in nonobese compared with obese and GDM subjects, after adjusting for BMI, lipids, and glucose. Irisin was present in neonatal cord serum (237 ± 8 ng/ml) and maternal CSF (32 ± 1.5 ng/ml). CSF irisin correlated positively with serum irisin levels from nonobese and obese pregnant women (P < 0.01), with CSF irisin significantly raised in GDM subjects (P < 0.05). Irisin was present in human hypothalamic sections in the paraventricular neurons, colocalized with neuropeptide Y. Irisin was detectable in CSF and in paraventricular neurons. Maternal serum irisin was lower in nonobese pregnant women after adjusting for BMI and a number of metabolic parameters. These studies indicate that irisin may have a central role in metabolism in addition to the known peripheral role. Further studies investigating the central action of irisin in human metabolic disease are required.


Microbiological Research | 2003

Poly(3-hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes: Effect of various carbon and nitrogen sources

L.H. Mahishi; Gyanendra Tripathi; S.K. Rawal

Recombinant Escherichia coli (ATCC:PTA-1579) harbouring poly(3-hydroxybutyrate) (PHB) synthesising genes from Streptomyces aureofaciens NRRL 2209 accumulates PHB. Effects of different carbon and nitrogen sources on PHB accumulation by recombinant E. coli were studied. Among the carbon sources used glycerol, glucose, palm oil and ethanol supported PHB accumulation. No PHB accumulated in recombinant cells when sucrose or molasses were used as carbon source. Yeast extract, peptone, a combination of yeast extract and peptone, and corn steep liquor were used as nitrogen sources. The maximum PHB accumulation (60% of cell dry weight) was measured after 48 h of cell growth at 37 degrees C in a medium with glycerol as the sole carbon source, and yeast extract and peptone as nitrogen sources. Scanning electron microscopy of the PHB granules isolated from recombinant E. coli revealed these to be spherical in shape with a diameter ranging from 0.11 to 0.35 pm with the mean value of 0.23 +/- 0.06 pm.


European Journal of Endocrinology | 2010

Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin

Omar S. Al-Attas; Nasser M. Al-Daghri; Majed S. Alokail; Assim A. Alfadda; Ahmed Bamakhramah; Shaun Sabico; Dave Pritlove; A. L. Harte; Gyanendra Tripathi; Philip G. McTernan; S. Kumar; George P. Chrousos

Objective Studies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2). Design and methods One hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR. Results Circulating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01). Conclusion Obesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging.

Collaboration


Dive into the Gyanendra Tripathi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Kumar

University of Warwick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge