Gyeong-Hun Baeg
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gyeong-Hun Baeg.
Science | 1996
Akihiko Matsumine; Akiko Ogai; Takao Senda; Nobuaki Okumura; Kiyotoshi Satoh; Gyeong-Hun Baeg; Takeo Kawahara; Shigeru Kobayashi; Masato Okada; Kumao Toyoshima; Tetsu Akiyama
The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors, and its product binds to the adherens junction protein β-catenin. Overexpression of APC blocks cell cycle progression. The APC-β-catenin complex was shown to bind to DLG, the human homolog of the Drosophila discs large tumor suppressor protein. This interaction required the carboxyl-terminal region of APC and the DLG homology repeat region of DLG. APC colocalized with DLG at the lateral cytoplasm in rat colon epithelial cells and at the synapse in cultured hippocampal neurons. These results suggest that the APC-DLG complex may participate in regulation of both cell cycle progression and neuronal function.
The EMBO Journal | 1995
Gyeong-Hun Baeg; Akihiko Matsumine; T. Kuroda; Rabindra Nath Bhattacharjee; Isao Miyashiro; Kumao Toyoshima; Tetsu Akiyama
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum‐induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell‐cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down‐regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin‐CDK complexes.
Nature Cell Biology | 2001
Erica M. Selva; Kyoungja Hong; Gyeong-Hun Baeg; Stephen M. Beverley; Salvatore J. Turco; Norbert Perrimon; Udo Häcker
The precise regulation of growth factor signalling is crucial to the molecular control of development in Drosophila. Post-translational modification of signalling molecules is one of the mechanisms that modulate developmental signalling specificity. We describe a new gene, fringe connection (frc), that encodes a nucleotide–sugar transporter that transfers UDP–glucuronic acid, UDP–N-acetylglucosamine and possibly UDP–xylose from the cytoplasm into the lumen of the endoplasmic reticulum/Golgi. Embryos with the frc mutation display defects in Wingless, Hedgehog and fibroblast growth factor signalling. Clonal analysis shows that fringe-dependent Notch signalling is disrupted in frc mutant tissue.
Current Opinion in Cell Biology | 2000
Gyeong-Hun Baeg; Norbert Perrimon
Heparan sulfate proteoglycans (HSPGs) are associated with the cell surface and covalently linked to a small number of long unbranched chains of repeating disaccharides. Numerous biochemical studies of these extracellular matrix molecules have implicated them in a variety of biological phenomena, in particular cell-cell interactions. Recent genetic studies in Drosophila have begun to clarify the function of HSPGs in vivo and recent findings have implicated HSPGs in Wnt, Hedgehog, fibroblast growth factor and transforming growth factor-beta signaling pathways during development.
Development | 2006
Laura A. Ekas; Gyeong-Hun Baeg; Maria Sol Flaherty; Aidee Ayala-Camargo; Erika A. Bach
During development, a small number of conserved signaling molecules regulate regional specification, in which uniform populations of cells acquire differences and ultimately give rise to distinct organs. In the Drosophila eye imaginal disc, Wingless (Wg) signaling defines the region that gives rise to head tissue. JAK/STAT signaling was thought to regulate growth of the eye disc but not pattern formation. However, we show that the JAK/STAT pathway plays an important role in patterning the eye disc: it promotes formation of the eye field through repression of the wg gene. Overexpression of the JAK/STAT activating ligand Unpaired in the eye leads to loss of wg expression and ectopic morphogenetic furrow initiation from the lateral margins. Conversely, tissue lacking stat92E, which cannot transduce JAK/STAT signals, is transformed from retinal tissue into head cuticle, a phenotype that is also observed with ectopic Wg signaling. Consistent with this, cells lacking stat92E exhibit ectopic wg expression. Conversely, wg is autonomously repressed in cells with hyperactivated Stat92E. Furthermore, we show that the JAK/STAT pathway regulates a small enhancer in the wg 3′ cis genomic region. As this enhancer is devoid of Stat92E-binding elements, we conclude that Stat92E represses wg through another, as yet unidentified factor that is probably a direct target of Stat92E. Taken together, our study is the first to demonstrate a role for the JAK/STAT pathway in regional specification by acting antagonistically to wg.
Nanotoxicology | 2015
Cynthia Ong; Lin-Yue Lanry Yung; Yu Cai; Boon-Huat Bay; Gyeong-Hun Baeg
Abstract Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.
British Journal of Haematology | 2010
Byung Hak Kim; Sei-Ryang Oh; Changhong Yin; Sangku Lee; Eun-Ah Kim; Min-Seok Kim; Claudio Sandoval; Somasundaram Jayabose; Erika A. Bach; Hyeong-Kyu Lee; Gyeong-Hun Baeg
In order to identify Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling inhibitors, a cell‐based high throughput screening was performed using a plant extract library that identified Nb‐(α‐hydroxynaphthoyl)serotonin called MS‐1020 as a novel JAK3 inhibitor. MS‐1020 potently inhibited persistently‐active STAT3 in a cell type‐specific manner. Further examination showed that MS‐1020 selectively blocked constitutively‐active JAK3 and consistently suppressed interleukin‐2‐induced JAK3/STAT5 signalling but not prolactin‐induced JAK2/STAT5 signalling. Furthermore, MS‐1020 affected cell viability only in cancer cells harbouring persistently‐active JAK3/STATs, and in vitro kinase assays showed MS‐1020 binds directly with JAK3, blocking its catalytic activity. Therefore, the present study suggested that this reagent selectively inhibits JAK3 and subsequently leads to a block in STAT signalling. Finally, MS‐1020 decreased cell survival by inducing apoptosis via down‐regulation of anti‐apoptotic gene expression. These results suggest that MS‐1020 may have therapeutic potential in the treatment of cancers harbouring aberrant JAK3 signalling.
Molecular Cancer Therapeutics | 2008
Byung Hak Kim; Changhong Yin; Qianxu Guo; Erika A. Bach; Haeryun Lee; Claudio Sandoval; Somasundaram Jayabose; Agnieszka Ulaczyk-Lesanko; Dennis G. Hall; Gyeong-Hun Baeg
Inappropriate activation of JAK/STAT signaling occurs with high frequency in human cancers and is associated with cancer cell survival and proliferation. Therefore, the development of pharmacologic STAT signaling inhibitors has therapeutic potential in the treatment of human cancers. Here, we report 2-[(3,5-bis-trifluoromethyl-phenyl)-hydroxy-methyl]-1-(4-nitro-phenylamino)-6-phenyl-1,2,4a,7a-tetrahydro-pyrrolo[3,4-b]-pyridine-5,7-dione (AUH-6-96) as a novel small-molecule inhibitor of JAK/STAT signaling that we initially identified through a cell-based high-throughput screening using cultured Drosophila cells. Treatment of Drosophila cells with AUH-6-96 resulted in a reduction of Unpaired-induced transcriptional activity and tyrosine phosphorylation of STAT92E, the sole Drosophila STAT homologue. In human cancer cell lines, AUH-6-96 inhibited both constitutive and interleukin-6-induced STAT3 phosphorylation. Specifically, in Hodgkin lymphoma L540 cells, treatment with AUH-6-96 resulted in reduced levels of tyrosine phosphorylated STAT3 and of the STAT3 downstream target gene SOCS3 in a dose- and time-dependent manner. In addition, AUH-6-96-treated L540 cells showed decreased expression of persistently activated JAK3, suggesting that AUH-6-96 inhibits the JAK/STAT pathway signaling in L540 cells by affecting JAK3 activity and subsequently blocking STAT3 signaling. Importantly, AUH-6-96 selectively affected cell viability only of cancer cells harboring aberrant JAK/STAT signaling. In support of the specificity of AUH-6-96 for inhibition of JAK/STAT signaling, treatment with AUH-6-96 decreased cancer cell survival by inducing programmed cell death by down-regulating the expression of STAT3 downstream target antiapoptotic genes, such as Bcl-xL. In summary, this study shows that AUH-6-96 is a novel small-molecule inhibitor of JAK/STAT signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK/STAT signaling. [Mol Cancer Ther 2008;7(9):2672–80]
International Journal of Nanomedicine | 2017
Cheng Teng Ng; Liang Qing Yong; Manoor Prakash Hande; Choon Nam Ong; Boon-Huat Bay; Gyeong-Hun Baeg
Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.
FEBS Letters | 1996
Osamu Higuchi; Gyeong-Hun Baeg; Tetsu Akiyama; Kensaku Mizuno
LIM‐kinase 1 (LIMK1) is a serine/threonine kinase containing two LIM motifs at the N‐terminus. The functional role of LIMKI has remained unknown. In this study, we examined the role of LIMK1 in cell growth of fibroblasts. Induced expression of LIMK1 in NIH3T3 cells led to growth retardation. Transfection of LIMK1 sense cDNA into NIH3T3 and H‐ras‐transformed FYJ10 fibroblasts significantly suppressed colony formation of these cells. In contrast, transfection with LIMK1 antisense cDNA strongly stimulated colony formation of the NIH3T3 cells. These findings suggest that LIMK1 functions as a negative regulator of fibroblast cell growth, and may play a role in tumor suppression.