Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gyesoon Yoon is active.

Publication


Featured researches published by Gyesoon Yoon.


Diabetologia | 2006

Mitochondria are impaired in the adipocytes of type 2 diabetic mice

Hyo-Jung Choo; Ji-Hyun Kim; O.-B. Kwon; Chang-Seok Lee; J. Y. Mun; S. S. Han; Young-Sil Yoon; Gyesoon Yoon; Kyung Mook Choi; Young Gyu Ko

Aims/hypothesisThe aim of this study was to confirm a link between mitochondrial dysfunction and type 2 diabetes.Materials and methodsCellular levels of mitochondrial proteins, cellular mitochondrial DNA content, and mitochondrial function and morphology were assessed by MitoTracker staining and electron microscopy, in white adipose tissue of 12-week-old male wild-type, obese (ob/ob), and diabetic (db/db) mice.ResultsLevels of mitochondrial proteins were found to be very similar in the livers and muscles of all the mice studied. However, levels were greatly decreased in the adipocytes of db/db mice, but not in those of the wild-type and ob/ob mice. Levels of mitochondrial DNA were also found to be considerably reduced in the adipocytes of db/db mice. MitoTracker staining and under electron microscopy revealed that the number of mitochondria was reduced in adipocytes of db/db mice. Respiration and fatty acid oxidation studies indicated mitochondrial dysfunction in adipocytes of db/db mice. Interestingly, there was an increase in mitochondria and mitochondrial protein production in adipocytes of db/db mice treated with rosiglitazone, an agent that enhances insulin sensitivity.Conclusions/interpretationTaken together, these data indicate that mitochondrial loss in adipose tissue is correlated with the development of type 2 diabetes.


Oncogene | 2005

Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype

Young-Woo Eom; Mi Ae Kim; Seok Soon Park; Mi Jin Goo; Hyuk Jae Kwon; Seonghyang Sohn; Wook-Hwan Kim; Gyesoon Yoon; Kyeong Sook Choi

Chronic exposure of many human hepatoma cell lines to a low dose (LD) of doxorubicin induced a senescence-like phenotype (SLP) accompanied by enlargement of cells and increased senescence-associated β-galactosidase activity. LD doxorubicin-induced SLP was preceded by multinucleation and downregulation of multiple proteins with mitotic checkpoint function, including CENP-A, Mad2, BubR1, and Chk1. LD doxorubicin-treated cells eventually underwent cell death through mitotic catastrophe. When we investigated whether LD doxorubicin-induced cell death shares biochemical characteristics with high dose (HD) doxorubicin-induced apoptosis in Huh-7 cells, we observed that externalization of phosphatidyl serine and release of mitochondrial cytochrome c into the cytosol was associated with both types of cell death. However, propidium iodide exclusion assays showed that membrane integrity was lost in the initial phase of LD doxorubicin-induced cell death through mitotic catastrophe, whereas it was lost during the late phase of HD doxorubicin-induced apoptosis. Furthermore, HD doxorubicin-induced apoptosis but not LD doxorubicin-induced mitotic catastrophe led to transient activation of NF-κB and strong, sustained activations of p38, c-Jun N-terminal kinase, and caspases. Collectively, these results indicate that different doses of doxorubicin activate different regulatory mechanisms to induce either apoptosis or cell death through mitotic catastrophe.


Journal of Cellular Physiology | 2006

Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1

Young-Sil Yoon; Dong-Sun Yoon; In Kyoung Lim; Yoon Sh; Hae Young Chung; Manuel Rojo; Florence Malka; Mei-Jie Jou; Jean-Claude Martinou; Gyesoon Yoon

Enlarged or giant mitochondria have often been documented in aged tissues although their role and underlying mechanism remain unclear. We report here how highly elongated giant mitochondria are formed in and related to the senescent arrest. The mitochondrial morphology was progressively changed to a highly elongated form during deferoxamine (DFO)‐induced senescent arrest of Chang cells, accompanied by increase of intracellular ROS level and decrease of mtDNA content. Interestingly, under exposure to subcytotoxic doses of H2O2 (200 µM), about 65% of Chang cells harbored elongated mitochondria with senescent phenotypes whereas ethidium bromide (EtBr) (50 ng/ml) only reformed the cristae structure. Elongated giant mitochondria were also observed in TGF β1‐ or H2O2‐induced senescent Mv1Lu cells and in old human diploid fibroblasts (HDFs). In all senescent progresses employed in this study Fis1 protein, a mitochondrial fission modulator, was commonly downexpressed. Overexpression of YFP‐Fis1 reversed both mitochondrial elongation and appearance of senescent phenotypes induced by DFO, implying its critical involvement in the arrest. Finally, we found that direct induction of mitochondrial elongation by blocking mitochondrial fission process with Fis1‐ΔTM or Drp1‐K38A was sufficient to develop senescent phenotypes with increased ROS production. These data suggest that mitochondrial elongation may play an important role as a mediator in stress‐induced premature senescence. J. Cell. Physiol. 209: 468–480, 2006.


Journal of Biological Chemistry | 2011

Involvement of Autophagy in Oncogenic K-Ras-induced Malignant Cell Transformation

Min Jung Kim; Soo Jung Woo; Chang-Hwan Yoon; Jae-Seong Lee; Sungkwan An; Yung Hyun Choi; Sang-Gu Hwang; Gyesoon Yoon; Su Jae Lee

Autophagy has recently been implicated in both the prevention and progression of cancer. However, the molecular basis for the relationship between autophagy induction and the initial acquisition of malignancy is currently unknown. Here, we provide the first evidence that autophagy is essential for oncogenic K-Ras (K-RasV12)-induced malignant cell transformation. Retroviral expression of K-RasV12 induced autophagic vacuole formation and malignant transformation in human breast epithelial cells. Interestingly, pharmacological inhibition of autophagy completely blocked K-RasV12-induced, anchorage-independent cell growth on soft agar. Both mRNA and protein levels of ATG5 and ATG7 (autophagy-specific genes 5 and 7, respectively) were increased in cells overexpressing K-RasV12. Targeted suppression of ATG5 or ATG7 expression by short hairpin (sh) RNA inhibited cell growth on soft agar and tumor formation in nude mice. Moreover, inhibition of reactive oxygen species (ROS) with antioxidants clearly attenuated K-RasV12-induced ATG5 and ATG7 induction, autophagy, and malignant cell transformation. MAPK pathway components were activated in cells overexpressing K-RasV12, and inhibition of JNK blunted induction of ATG5 and ATG7 and subsequent autophagy. In addition, pretreatment with antioxidants completely inhibited K-RasV12-induced JNK activation. Our results provide novel evidence that autophagy is critically involved in malignant transformation by oncogenic K-Ras and show that reactive oxygen species-mediated JNK activation plays a causal role in autophagy induction through up-regulation of ATG5 and ATG7.


Nature | 2014

Transcriptional regulation of autophagy by an FXR-CREB axis

Sunmi Seok; Ting Fu; Sung E. Choi; Yang Li; Rong Zhu; Subodh Kumar; Xiaoxiao Sun; Gyesoon Yoon; Yup Kang; Wenxuan Zhong; Jian Ma; Byron Kemper; Jongsook Kim Kemper

Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions. Acute regulation of autophagy by nutrient-sensing kinases is well defined, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor farnesoid X receptor (FXR) and the fasting transcriptional activator cAMP response element-binding protein (CREB) coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice, and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver chromatin immunoprecipitation and high-throughput sequencing data, FXR and CREB binding peaks were detected at 178 and 112 genes, respectively, out of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted autophagic degradation of lipids, or lipophagy, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1 and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB–CRTC2 complex. This study identifies the new FXR–CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles.


Cellular and Molecular Life Sciences | 2009

A comparative analysis of the cell biology of senescence and aging

Eun Seong Hwang; Gyesoon Yoon; Hyun Tae Kang

Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.


Oncogene | 2013

Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells

Yongjoon Suh; Chang-Hwan Yoon; Rae Kwon Kim; Eun Jung Lim; Yeong Seok Oh; Sang Gu Hwang; Sungkwan An; Gyesoon Yoon; Myung Chan Gye; J. M. Yi; Mi Jeong Kim; Su Jae Lee

Claudins (CLDNs) are a family of integral membrane proteins central to the formation of tight junctions, structures that are involved in paracellular transport and cellular growth and differentiation, and are critical for the maintenance of cellular polarity. Recent studies have provided evidence that CLDNs are aberrantly expressed in diverse types of human cancers, including hepatocellular carcinomas (HCCs). However, little is known about how CLDN expression is involved in cancer progression. In this study, we show that CLDN1 has a causal role in the epithelial–mesenchymal transition (EMT) in human liver cells, and that the c-Abl-Ras-Raf-1-ERK1/2 signaling axis is critical for the induction of malignant progression by CLDN1. Overexpression of CLDN1 induced expression of the EMT-regulating transcription factors Slug and Zeb1, and thereby led to repression of E-cadherin, β-catenin expression, enhanced expression of N-cadherin and Vimentin, a loss of cell adhesion, and increased cell motility in normal liver cells and HCC cells. In line with these findings, inhibition of either c-Abl or ERK clearly attenuated CLDN1-induced EMT, as evidenced by a reversal of N-cadherin and E-cadherin expression patterns, and restored normal motility. Collectively, these results indicate that CLDN1 is necessary for the induction of EMT in human liver cells, and that activation of the c-Abl-Ras-Raf-1-ERK1/2 signaling pathway is required for CLDN1-induced acquisition of the malignant phenotype. The present observations suggest that CLDN1 could be exploited as a biomarker for liver cancer metastasis and might provide a pivotal point for therapeutic intervention in HCC.


Oncogene | 2005

TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells.

Young-Sil Yoon; Jae-Ho Lee; Sung-Chul Hwang; Kyeong Sook Choi; Gyesoon Yoon

Transforming growth factor β1 (TGF β1) is a well-characterized cytokine that suppresses epithelial cell growth. We report here that TGF β1 arrested lung epithelial Mv1Lu cells at G1 phase of the cell cycle with acquisition of senescent phenotypes in the presence of 10% serum, whereas it gradually induced apoptosis with lower concentrations of serum. The senescent arrest was accompanied by prolonged generation of reactive oxygen species (ROS) and persistent disruption of mitochondrial membrane potential (ΔΨm). We demonstrated that the sustained ROS overproduction was derived from mitochondrial respiratory defect via decreased complex IV activity and was involved in the arrest. Moreover, we verified that hepatocyte growth factor released Mv1Lu cells from the arrest by protecting mitochondrial respiration, thereby preventing both the ΔΨm disruption and the ROS generation. Our present results suggest the TGF β1-induced senescent arrest as another plausible mechanism to suppress cellular growth in vivo and provide a new biochemical association between the mitochondrial functional defects and the cytokine-induced senescent arrest, emphasizing the importance of maintenance of mitochondrial function in cellular protection from the arrest.


Cancer Research | 2012

Wnt/Snail Signaling Regulates Cytochrome c Oxidase and Glucose Metabolism

Su Yeon Lee; Hyun Min Jeon; Min Kyung Ju; Cho Hee Kim; Gyesoon Yoon; Song Iy Han; Hye Gyeong Park; Ho Sung Kang

Wnt signaling plays a critical role in embryonic development, and its deregulation is closely linked to the occurrence of a number of malignant tumors, including breast and colon cancer. The pathway also induces Snail-dependent epithelial-to-mesenchymal transition (EMT), which is responsible for tumor invasion and metastasis. In this study, we show that Wnt suppresses mitochondrial respiration and cytochrome C oxidase (COX) activity by inhibiting the expression of 3 COX subunits, namely, COXVIc, COXVIIa, and COXVIIc. We found that Wnt induced a glycolytic switch via increased glucose consumption and lactate production, with induction of pyruvate carboxylase (PC), a key enzyme of anaplerosis. In addition, Wnt-induced mitochondrial repression and glycolytic switching occurred through the canonical β-catenin/T-cell factor 4/Snail pathway. Short hairpin RNA-mediated knockdown of E-cadherin, a regulator of EMT, repressed mitochondrial respiration and induced a glycolytic switch via Snail activation, indicating that EMT may contribute to Wnt/Snail regulation of mitochondrial respiration and glucose metabolism. Together, our findings provide a new function for Wnt/Snail signaling in the regulation of mitochondrial respiration (via COX gene expression) and glucose metabolism (via PC gene expression) in tumor growth and progression.


Autophagy | 2011

Involvement of mitophagy in oncogenic K-Ras-induced transformation: Overcoming a cellular energy deficit from glucose deficiency

June Hyung Kim; Hee Young Kim; Young Kyoung Lee; Young Sil Yoon; Wei Guang Xu; Joon Kee Yoon; Sung E. Choi; Young Gyu Ko; Min Jung Kim; Su‑Jae Lee; Hee Jung Wang; Gyesoon Yoon

Although mitochondrial impairment has often been implicated in carcinogenesis, the mechanisms of its development in cancer remain unknown. We report here that autophagy triggered by oncogenic K-Ras mediates functional loss of mitochondria during cell transformation to overcome an energy deficit resulting from glucose deficiency. When Rat2 cells were infected with a retrovirus harboring constitutively active K-RasV12, mitochondrial respiration significantly declined in parallel with the acquisition of transformation characteristics. Decreased respiration was not related to mitochondrial biogenesis but was inversely associated with the increased formation of acidic vesicles enclosing mitochondria, during which autophagy-related proteins such as Beclin 1, Atg5, LC3-II and vacuolar ATPases were induced. Interestingly, blocking autophagy with conventional inhibitors (bafilomycin A, 3-methyladenin) and siRNA-mediated knockdown of autophagy-related genes recovered respiratory protein expression and respiratory activity; JNK was involved in these phenomena as an upstream regulator. The cells transformed by K-RasV12 maintained cellular ATP level mainly through glycolytic ATP production without induction of GLUT1, the low Km glucose transporter. Finally, K-RasV12-triggered LC3-II formation was modulated by extracellular glucose levels, and LC3-II formation increased only in hepatocellular carcinoma tissues exhibiting low glucose uptake and increased K-Ras expression. Taken together, our observations suggest that mitochondrial functional loss may be mediated by oncogenic K-Ras-induced mitophagy during early tumorigenesis even in the absence of hypoxia, and that this mitophagic process may be an important strategy to overcome the cellular energy deficit triggered by insufficient glucose.

Collaboration


Dive into the Gyesoon Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge