Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where György A. Homola is active.

Publication


Featured researches published by György A. Homola.


Journal of Magnetic Resonance Imaging | 2006

Diagnostic functional MRI: Illustrated clinical applications and decision-making

Andreas J. Bartsch; György A. Homola; Armin Biller; Laszlo Solymosi; Martin Bendszus

Functional magnetic resonance imaging (fMRI) has become a popular research tool, yet its use for diagnostic purposes and actual treatment planning has remained less widespread. The literature yields rather sparse evidence‐based data on clinical fMRI applications and accordant decision‐making. Notwithstanding, blood oxygenation level dependent (BOLD)‐ and arterial spin labeling (ASL)‐fMRI can be judiciously combined with perfusion measurements, electroencephalographic (EEG) recordings, diffusion‐weighted imaging (DWI), and fiber tractographies to assist clinical decisions. In this article we provide an overview of clinical fMRI applications based on illustrative examples. Assessment of cochlear implant candidates by fMRI is covered in some detail, and distinct reference is made to particular challenges imposed by brain tumors, other space‐occupying lesions, cortical dysplasias, seizure disorders, and vascular malformations. Specific strategies, merits, and pitfalls of analyzing and interpreting diagnostic fMRI studies in individual patients are highlighted. J. Magn. Reson. Imaging 2006.


Annals of Neurology | 2015

Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation

Eva Göb; Stephan Reymann; Friederike Langhauser; Michael K. Schuhmann; Peter Kraft; Ina Thielmann; Kerstin Göbel; Marc Brede; György A. Homola; Laszlo Solymosi; Guido Stoll; Christian Geis; Sven G. Meuth; Bernhard Nieswandt; Christoph Kleinschnitz

Recent evidence suggests that ischemic stroke is a thromboinflammatory disease. Plasma kallikrein (PK) cleaves high–molecular‐weight kininogen to release bradykinin (BK) and is a key constituent of the proinflammatory contact‐kinin system. In addition, PK can activate coagulation factor XII, the origin of the intrinsic coagulation cascade. Thus, PK triggers 2 important pathological pathways of stroke formation, thrombosis and inflammation.


Journal of Cerebral Blood Flow and Metabolism | 2009

The effect of ethanol on human brain metabolites longitudinally characterized by proton MR spectroscopy

Armin Biller; Andreas J. Bartsch; György A. Homola; Laszlo Solymosi; Martin Bendszus

The effect ethanol exerts on the human brain has not yet been addressed by longitudinal magnetic resonance (MR) spectroscopic experiments. Therefore, we longitudinally characterized cerebral metabolite changes in 15 healthy individuals by proton magnetic resonance spectroscopy (1H-MRS) subsequent to the ingestion of a standard beverage (mean peak blood alcohol concentration (BAC): 51.43 ± 10.27 mg/dL). Each participant was examined before, over 93.71 ± 11.17 mins immediately after and 726.36 ± 94.96 mins (12.11 ± 1.58 h) past per os alcohol exposure. Fronto-mesial and cerebellar ethanol concentrations over time were similar as determined by the LCModel analysis of spectral data. Alcohol-induced changes of fronto-mesial creatine, choline, glucose, inositol and aspartate levels for 5.79 ± 2.94 mins upon ingestion as well as cerebellar choline and inositol levels for 8.64 ± 2.98 mins past exposure. Closely associated with ethanol concentrations, supratentorial creatine, choline, inositol and aspartate levels decreased after ethanol administration, whereas glucose levels increased. Similarly, infratentorial choline and inositol concentrations were negatively correlated with ethanol levels over time. There were no changes in N-acetyl-aspartate levels upon alcohol exposure. Furthermore, no influence of ethanol on brain water integrals was detected. Ethanol consumption may directly increase oxidative stress and the neuronal vulnerability to it. In addition, our results are compatible with ethanol-induced cell membrane modifications and alternative energy substrate usage upon alcohol exposure.


NeuroImage | 2015

Modulation of prefrontal functioning in attention systems by NPSR1 gene variation.

Maximilian J. Geiger; György A. Homola; Marina Mahr; Atae Akhrif; Johannes Nowak; Andreas Reif; Marcel Romanos; Jürgen Deckert; Laszlo Solymosi; Katharina Domschke

Evidence has accumulated for a dysfunction of arousal and executive attention in anxiety. The neuropeptide S (NPS) system has been shown to play a pivotal role in the mediation of arousal and to be associated with anxiety/panic disorder. The present study aims at investigating the impact of functional neuropeptide S receptor (NPSR1) gene variation on neural attention patterns applying an imaging genetics approach. In an event-related functional magnetic resonance imaging (fMRI) setting, 47 healthy subjects (f=23) evenly pre-stratified for NPSR1 rs324981 A/T genotype were investigated for brain activation patterns while performing the Attention Network Task (ANT), simultaneously probing alerting and executive control functions. Anxiety sensitivity was ascertained by the Anxiety Sensitivity Index (ASI). In the alerting condition, NPSR1 TT homozygotes showed higher activations in the right prefrontal cortex and the locus coeruleus region as compared to A allele carriers. In the executive control condition, TT homozygotes displayed increased activations in fronto-parietal regions. Genotype-driven activation differences in the prefrontal cortex correlated with anxiety sensitivity, in both the alerting and the executive control system. The present results for the first time suggest NPSR1 gene variation to be associated with alterations of prefrontal functioning in the attentional functions alerting and executive control partly modulated by anxiety sensitivity. These findings may aid in unraveling the neurobiological underpinnings of distorted arousal and attention in anxiety and thereby possibly in the biomarker-guided development of preventive/therapeutic strategies targeting attention processes in anxiety disorders.


PLOS ONE | 2014

Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease

Nurcan Üçeyler; György A. Homola; Hans Guerrero González; Daniela Kramer; Christoph Wanner; Frank Weidemann; Laszlo Solymosi; Claudia Sommer

A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males – females; normal – impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13%) and 5/57 (9%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87%, specificity: 86%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity.


American Journal of Neuroradiology | 2015

Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy

Armin Biller; M. Reuter; Brian Patenaude; György A. Homola; F. Breuer; Martin Bendszus; Andreas J. Bartsch

Serial T1WI and 1H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, at 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. With dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. The authors conclude that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. BACKGROUND AND PURPOSE: As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. MATERIALS AND METHODS: Serial T1-weighted and 1H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. RESULTS: On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. CONCLUSIONS: This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings.


Neurology | 2016

Determinants of white matter hyperintensity burden in patients with Fabry disease

Natalia S. Rost; Lisa Cloonan; Allison Kanakis; Kaitlin Fitzpatrick; Danielle R. Azzariti; Virginia Clarke; Charles M. Lourenco; Dominique P. Germain; Juan Politei; György A. Homola; Claudia Sommer; Nurcan Üçeyler; Katherine B. Sims

Objective: Using a semiautomated volumetric MRI assessment method, we aimed to identify determinants of white matter hyperintensity (WMH) burden in patients with Fabry disease (FD). Methods: Patients with confirmed FD and brain MRI available for this analysis were eligible for this protocol after written consent. Clinical characteristics were abstracted from medical records. T2 fluid-attenuated inversion recovery MRI were transferred in electronic format and analyzed for WMH volume (WMHV) using a validated, computer-assisted method. WMHV was normalized for head size (nWMHV) and natural log-transformed (lnWMHV) for univariate and multivariate linear regression analyses. Level of significance was set at p < 0.05 for all analyses. Results: Of 223 patients with FD and WMHV analyzed, 132 (59%) were female. Mean age at MRI was 39.2 ± 14.9 (range 9.6–72.7) years, and 136 (61%) patients received enzyme replacement therapy prior to enrollment. Median nWMHV was 2.7 cm3 (interquartile range 1.8–4.0). Age (β 0.02, p = 0.008) and history of stroke (β 1.13, p = 0.02) were independently associated with lnWMHV. However, WMH burden—as well as WMHV predictors—varied by decade of life in this cohort of patients with FD (p < 0.0001). Conclusions: In this largest-to-date cohort of patients with FD who had volumetric analysis of MRI, age and prior stroke independently predicted the burden of WMH. The 4th decade of life appears to be critical in progression of WMH burden, as novel predictors of WMHV emerged in patients aged 31–40 years. Future studies to elucidate the biology of WMH in FD and its role as potential MRI marker of disease progression are needed.


PLOS ONE | 2012

A brain network processing the age of faces.

György A. Homola; Saad Jbabdi; Christian F. Beckmann; Andreas J. Bartsch

Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernickes understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.


European Neuropsychopharmacology | 2016

ADORA2A genotype modulates interoceptive and exteroceptive processing in a fronto-insular network

Maximilian J. Geiger; Katharina Domschke; György A. Homola; Stefan M. Schulz; Johannes Nowak; Atae Akhrif; Paul Pauli; Jürgen Deckert

Facilitated processing of interoceptive and exteroceptive information in the salience network is suggested to promote the development of anxiety and anxiety disorders. Here, it was investigated whether the adenosine 2 A receptor gene (ADORA2A) 1976T/C (rs5751876) variant - previously associated with anxiety disorders and anxiety-related phenotypes as well as general attentional efficiency -was involved in the regulation of this network. In detail, fMRI recordings of 65 healthy participants (female=35) were analyzed regarding ADORA2A genotype effects on brain connectivity related to (1) interoceptive processing in terms of functional connectivity resting-state fMRI, and (2) exteroceptive processing using dynamic causal modeling in task-based fMRI. In a subsample, cardiac interoceptive accuracy was furthermore measured via the Mental Tracking Task. ADORA2A genotype was found to modulate a fronto-insular network at rest (interoceptive processing) and while performing an executive control task (exteroceptive processing). Across both modalities, the ADORA2A TT risk genotype was associated with increased connectivity between the insula and the prefrontal cortex. The strength in connectivity correlated with interoceptive accuracy. It is concluded that alterations in fronto-insular connectivity are modulated by both the adenosinergic system and interoceptive accuracy. Thus, fronto-insular connectivity in synopsis with ADORA2A genotypic information could serve as combined biomarkers for personalized treatment approaches in anxiety disorders targeting exteroceptive and interoceptive dysfunction.


Brain Research | 2009

Background MR gradient noise and non-auditory BOLD activations: a data-driven perspective.

Sven Haller; György A. Homola; Klaus Scheffler; Christian F. Beckmann; Andreas J. Bartsch

The effect of echoplanar imaging (EPI) acoustic background noise on blood oxygenation level dependent (BOLD) activations was investigated. Two EPI pulse sequences were compared: (i) conventional EPI with a pulsating sound component of typically 8-10 Hz, which is a potent physiological stimulus, and (ii) the more recently developed continuous-sound EPI, which is perceived as less distractive despite equivalent peak sound pressure levels. Sixteen healthy subjects performed an established demanding visual n-back working memory task. Using an exploratory data analysis technique (tensorial probabilistic independent component analysis; tensor-PICA), we studied the inter-session/within-subject response variability introduced by continuous-sound versus conventional EPI acoustic background noise in addition to temporal and spatial signal characteristics. The analysis revealed a task-related component associated with the established higher-level working memory and motor feedback response network, which exhibited a significant 19% increase in its average effect size for the continuous-sound as opposed to conventional EPI. Stimulus-related lower-level activations, such as primary visual areas, were not modified. EPI acoustic background noise influences much more than the auditory system per se. This analysis provides additional evidence for an enhancement of task-related, extra-auditory BOLD activations by continuous-sound EPI due to less distractive acoustic background gradient noise.

Collaboration


Dive into the György A. Homola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Bendszus

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Stoll

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge