Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where György Lonart is active.

Publication


Featured researches published by György Lonart.


Radiation Research | 2012

Low (20 cGy) Doses of 1 GeV/u 56Fe-Particle Radiation Lead to a Persistent Reduction in the Spatial Learning Ability of Rats

Richard A. Britten; Leslie K. Davis; Angela M. Johnson; Sonia Keeney; Andrew Siegel; Larry D. Sanford; Sylvia J. Singletary; György Lonart

Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. 56Fe. In previous ground-based experiments, exposure to high doses of HZE-particle radiation induced pronounced deficits in hippocampus-dependent learning and memory in rodents. Recent data suggest that glutamatergic transmission in hippocampal synaptosomes is impaired after low (60 cGy) doses of 1 GeV/u 56Fe particles, which could lead to impairment of hippocampus-dependent spatial memory. To assess the effects of mission-relevant (20–60 cGy) doses of 1 GeV/u 56Fe particles on hippocampus-dependent spatial memory, male Wistar rats either received sham treatment or were irradiated and tested 3 months later in the Barnes maze test. Compared to the controls, rats that received 20, 40 and 60 cGy 1 GeV/u 56Fe particles showed significant impairments in their ability to locate the escape box in the Barnes maze, which was manifested by progressively increasing escape latency times over the 3 days of testing. However, this increase was not due to a lack of motivation of the rats to escape, because the total number of head pokes (and especially incorrect head pokes) remained constant over the test period. Given that rats exposed to X rays did not exhibit spatial memory impairments until >10 Gy was delivered, the RBE for 1 GeV/u 56Fe-particle-induced hippocampal spatial memory impairment is ∼50. These data demonstrate that mission-relevant doses of 1 GeV/u 56Fe particles can result in severe deficits in hippocampus-dependent neurocognitive tasks, and the extreme sensitivity of these processes to 1 GeV/u 56Fe particles must arise due to the perturbation of multiple processes in addition to killing neuronal cells.


Nature Neuroscience | 2004

Adapter protein 14-3-3 is required for a presynaptic form of LTP in the cerebellum

Fatma Simsek-Duran; David J. Linden; György Lonart

Long-term potentiation (LTP) of granule cell–Purkinje cell synapses in the mouse cerebellum requires phosphorylation by protein kinase A of the active-zone protein RIM1α at Ser413. Here, we show that the adapter protein 14-3-3 readily binds phosphorylated Ser413 in RIM1α, and that presynaptic transfection with a dominant-negative 14-3-3η mutant, or a RIM1α mutant with enhanced 14-3-3 binding, inhibits LTP. Thus, RIM1α phosphorylation triggers presynaptic LTP in part through recruitment of 14-3-3 to phospho-Ser413–RIM1α.


Trends in Neurosciences | 2002

RIM1: an edge for presynaptic plasticity.

György Lonart

Pioneering work suggests that a synaptic active zone protein, RIM1, regulates both short- and long-term glutamatergic presynaptic plasticity at certain synapses. In short-term plasticity, RIM1 accelerates the priming of synaptic vesicles for fusion; by contrast, in long-term potentiation of mossy fiber synapses in the hippocampal CA3 region, phosphorylated RIM1 acts through an unknown molecular pathway to enhance release of the excitatory neurotransmitter glutamate.


Radiation Research | 2010

Low (60 cGy) Doses of 56Fe HZE-Particle Radiation Lead to a Persistent Reduction in the Glutamatergic Readily Releasable Pool in Rat Hippocampal Synaptosomes

Mayumi Machida; György Lonart; Richard A. Britten

Abstract Exposure to galactic cosmic radiation (GCR) is considered to be a potential health risk in long-term space travel, and it represents a significant risk to the central nervous system (CNS). The most harmful component of GCR is the HZE [high-mass, highly charged (Z), high-energy] particles, e.g. 56Fe. In ground-based experiments, exposure to HZE-particle radiation induces pronounced deficits in hippocampus-dependent learning and memory in rodents. The mechanisms underlying these impairments are mostly unknown, but some studies suggest that HZE-particle exposure perturbs the regulation of long-term potentiation (LTP) at the CA1 synapse in the hippocampus. In this study, we irradiated rats with 60 cGy of 1 GeV 56Fe-particle radiation and established its impact on hippocampal glutamatergic neurotransmissions at 3 and 6 months after exposure. Exposure to 60 cGy 56Fe-particle radiation significantly (P < 0.05) reduced hyperosmotic sucrose evoked [3H]-glutamate release from hippocampal synaptosomes, a measure of the readily releasable vesicular pool (RRP). This HZE-particle-induced reduction in the glutamatergic RRP persisted for at least 6 months after exposure. At 90 days postirradiation, there was a significant reduction in the expression of the NR1, NR2A and NR2B subunits of the glutamatergic NMDA receptor. The level of the NR2A protein remained suppressed at 180 days postirradiation, but the level of NR2B and NR1 proteins returned to or exceeded normal levels, respectively. Overall, this study shows that hippocampal glutamatergic transmission is sensitive to relative low doses of 56Fe particles. Whether the observed HZE-particle-induced change in glutamate transmission, which plays a critical role in learning and memory, is the cause of HZE-particle-induced neurocognitive impairment requires further investigation.


Radiation Research | 2012

Executive Function in Rats is Impaired by Low (20 cGy) Doses of 1 GeV/u 56Fe Particles

György Lonart; Brian Parris; Angela M. Johnson; Scott Miles; Larry D. Sanford; Sylvia J. Singletary; Richard A. Britten

Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., 56Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u 56Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u 56Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u 56Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated cortex and the basal forebrain. Our observation that 20 cGy of 1 GeV/u 56Fe particles is sufficient to impair the ability of rats to conduct attentional set-shifting raises the possibility that astronauts on prolonged deep space exploratory missions could subsequently develop deficits in executive function.


The Journal of Physiology | 2008

Synapsin II and calcium regulate vesicle docking and the cross-talk between vesicle pools at the mouse motor terminals

William L. Coleman; Cynthia A. Bill; Fatma Simsek-Duran; György Lonart; Dmitry Samigullin; Maria Bykhovskaia

The synapsins, an abundant and highly conserved family of proteins that associate with synaptic vesicles, have been implicated in regulating the synaptic vesicle cycle. However, it has not been determined whether synapsin directly regulates the number of docked vesicles. Here we document that reducing Ca2+ concentration [Ca2+]o in the extracellular medium from 2 to 0.5 mm led to an approximately 40% decrease in both docked and undocked synaptic vesicles in wild‐type nerve terminals of the mouse diaphragm. The same treatment reduced the number of undocked vesicles in nerve terminals derived from synapsin II gene deleted animals, but surprisingly it did not decrease vesicle docking, indicating that synapsin II inhibits docking of synaptic vesicles at reduced [Ca2+]o. In accordance with the morphological findings, at reduced [Ca2+]o synapsin II (−) terminals had a higher rate of quantal neurotransmitter release. Microinjection of a recombinant synapsin II protein into synapsin II (−) terminals reduced vesicular docking and inhibited quantal release, indicating a direct and selective synapsin II effect for regulating vesicle docking and, in turn, quantal release. To understand why [Ca2+]o has a prominent effect on synapsin function, we investigated the effect of [Ca2+]o on the distribution of synaptic vesicles and on the concentration of intraterminal Ca2+. We found that reduced [Ca2+]o conditions produce a decrease in intracellular Ca2+ and overall vesicle depletion. To explore why at these conditions the role of synapsin II in vesicle docking becomes more prominent, we developed a quantitative model of the vesicle cycle, with a two step synapsin action in stabilizing the vesicle store and regulating vesicle docking. The results of the modelling were in a good agreement with the observed dependence of vesicle distribution on synapsin II and calcium deficiency.


Radiation Research | 2014

Exposure to Mission Relevant Doses of 1 GeV/Nucleon 56Fe Particles Leads to Impairment of Attentional Set-Shifting Performance in Socially Mature Rats

Richard A. Britten; Leslie K. Davis; Jessica S. Jewell; Vania D. Miller; Melissa M. Hadley; Larry D. Sanford; Mayumi Machida; György Lonart

Previous ground-based experiments have shown that cranial irradiation with mission relevant (20 cGy) doses of 1 GeV/nucleon 56Fe particles leads to a significant impairment in Attentional Set Shifting (ATSET) performance, a measure of executive function, in juvenile Wistar rats. However, the use of head only radiation exposure and the biological age of the rats used in that study may not be pertinent to determine the likelihood that ATSET will be impaired in Astronauts on deep space flights. In this study we have determined the impact that whole-body exposure to 10, 15 and 20 cGy of 1 GeV/nucleon 56Fe particles had on the ability (at three months post exposure) of socially mature (retired breeder) Wistar rats to conduct the attentional set-shifting paradigm. The current study has established that whole-body exposures to 15 and 20 (but not 10) cGy of 1 GeV/nucleon 56Fe particles results in the impairment of ATSET in both juvenile and socially mature rats. However, the exact nature of the impaired ATSET performance varied depending upon the age of the rats, whether whole-body versus cranial irradiation was used and the dose of 1 GeV/u 56Fe received. Exposure of juvenile rats to 20 cGy of 1 GeV/nucleon 56Fe particles led to a decreased ability to perform intra-dimensional shifting (IDS) irrespective of whether the rats received head only or whole-body exposures. Juvenile rats that received whole-body exposure also had a reduced ability to habituate to the assay and to complete intra-dimensional shifting reversal (IDR), whereas juvenile rats that received head only exposure had a reduced ability to complete compound discrimination reversal (CDR). Socially mature rats that received whole-body exposures to 10 cGy of 1 GeV/nucleon 56Fe particles exhibited no obvious decline in set-shifting performance; however those exposed to 15 and 20 cGy had a reduced ability to perform simple discrimination (SD) and compound discrimination (CD). Exposure to 20 cGy of 1 GeV/nucleon 56Fe particles also led to a decreased performance in IDR and to ∼25% of rats failing to habituate to the task. Most of these rats started to dig for the food reward but rapidly (within 15 s) gave up digging, suggesting that they had developed appropriate procedural memories about food retrieval, but had an inability to maintain attention on the task. Our preliminary data suggests that whole-body exposure to 20 cGy of 1 GeV/nucleon 56Fe particles reduced the cholinergic (but not the GABAergic) readily releasable pool (RRP) in nerve terminals of the basal forebrain from socially-mature rats. This perturbation of the cholinergic RRP could directly lead to the loss of CDR and IDR performance, and indirectly [through the metabolic changes in the medial prefrontal cortex (mPFC)] to the loss of SD and CD performance. These findings provide the first evidence that attentional set-shifting performance in socially mature rats is impaired after whole-body exposure to mission relevant doses (15 and 20 cGy) of 1 GeV/nucleon 56Fe particles, and importantly that a dose reduction down to 10 cGy prevents that impairment. The ability to conduct Discrimination tasks (SD and CD) and reversal learning (CDR) is reduced after exposure to 15 and 20 cGy of 1 GeV/nucleon 56Fe particles, but at 20 cGy there is an additional decrement, ∼ 25% of rats are unable to maintain attention to task. These behavioral decrements are associated with a reduction in the cholinergic RRP within basal forebrain, which has been shown to play a major role in regulating the activity of the PFC.


Health Physics | 2010

The identification of serum biomarkers of high-let radiation exposure and biological sequelae.

Richard Britten; Shamina Mitchell; Angela M. Johnson; Sylvia J. Singletary; Sonia Keeney; Julius O. Nyalwidhe; Izabela D. Karbassi; György Lonart; Larry D. Sanford; Richard R. Drake

In the event of a nuclear detonation, thousands of people will be exposed to non-lethal radiation doses. There are multiple long-term health concerns for exposed individuals who receive non-lethal radiation exposures. Low doses of radiation, especially of high linear energy transfer (LET) radiation, can lead to the development of neurocognitive defects. The identification of serum biomarkers that can be used to monitor the emergence of the long-term biological sequelae of radiation exposure, such as neurocognitive defects, would greatly help the post-exposure health monitoring of the affected population. The authors have determined the impact that cranial irradiation with 2 Gy of high LET (150 keV um−1) has on the ability of rats to perform spatial memory tasks, and identified serum protein changes that are biomarkers of radiation exposure and of radiation-induced neurocognitive impairment. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI TOF-TOF) analysis of weak cation exchange (WCX) enriched serum protein preparations identified 23 proteins of interest: 10 were biomarkers of physical radiation dose, with six showing increased expression and four being undetectable in the irradiated rat serum. Four proteins were uniquely expressed in those rats that had good spatial memory and nine proteins were markers of bad spatial memory. This study provides proof of the concept that serum protein profiling can be used to identify biomarkers of radiation exposure and the emergence of radiation-sequelae in this rat model, and this approach could be easily applied to other systems to identify radiation biomarkers.


Neuropharmacology | 2008

The role of RIM1α in BDNF-enhanced glutamate release

Fatma Simsek-Duran; György Lonart

Brain-derived neurotrophic factor (BDNF) is known to activate proline-directed Ser/Thr protein kinases and to enhance glutamatergic transmission via a Rab3a-dependent molecular pathway. The identity of molecular targets in BDNFs action on Rab3a pathway, a synaptic vesicle protein involved in vesicle trafficking and synaptic plasticity, is not fully known. Here we demonstrate that BDNF enhances depolarization-evoked efflux of [(3)H]-glutamate from nerve terminals isolated from the CA1 region of the hippocampus. BDNF also potentiated hyperosmotic shock-evoked [(3)H]-glutamate efflux, indicating an effect on the size of the readily releasable pool. This effect of BDNF was completely abolished in nerve terminals derived from Rim1alphaKO (Rab3 interacting molecule 1alpha null mutant) mice. Using in vitro phosphorylation assays we identified two novel phosphorylation sites, Ser447 and Ser745 that were substrates for ERK2, a proline-directed kinase known to be activated by BDNF. The pSer447 site was phosphorylated under resting conditions in hippocampal CA1 nerve terminals and its phosphorylation was enhanced by BDNF treatment, as indicated by the use of a pSer447-RIM1alpha antibody we have developed. Together these findings identify RIM1alpha, a component of the Rab3a molecular pathway in mediating presynaptic plasticity, as a necessary factor in BDNFs enhancement of [(3)H]-glutamate efflux from hippocampal CA1 nerve terminals and indicate a possible role for RIM1alpha phosphorylation in BDNF-dependent presynaptic plasticity.


Neuroscience | 2008

The role of active zone protein Rab3 interacting molecule 1 alpha in the regulation of norepinephrine release, response to novelty, and sleep

György Lonart; Xiangdong Tang; Fatma Simsek-Duran; Mayumi Machida; Larry D. Sanford

Sleep mechanisms and synaptic plasticity are thought to interact to regulate homeostasis and memory formation. However, the influences of molecules that mediate synaptic plasticity on sleep are not well understood. In this study we demonstrate that mice lacking Rab3 interacting molecule 1 alpha (RIM1 alpha) (Rim1 alpha KO), a protein of the synaptic active zone required for certain types of synaptic plasticity and learning, had 53+/-5% less baseline rapid eye movement (REM) sleep compared with their wild type littermates. Also, compared with wild type littermates, exposure of the mice to an open field or to a novel object induced more robust and longer lasting locomotion suggesting altered habituation. This difference in exploratory behavior correlated with genotype specific changes in REM and deregulated release of norepinephrine in the cortex and basal amygdala of the Rim1 alpha KO mice. Also, moderate sleep deprivation (4 h), a test of the homeostatic sleep response, induced REM sleep rebound with different time course in Rim1 alpha KO and their wild type littermates. As norepinephrine plays an important role in regulating arousal and REM sleep, our data suggest that noradrenergic deficiency in Rim1 alpha KO animals impacts exploratory behavior and sleep regulation and contributes to impairments in learning.

Collaboration


Dive into the György Lonart's collaboration.

Top Co-Authors

Avatar

Larry D. Sanford

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Fatma Simsek-Duran

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Mayumi Machida

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie K. Davis

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Jessica S. Jewell

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Laurie L. Wellman

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Melissa M. Hadley

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Vania D. Miller

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Xiangdong Tang

Eastern Virginia Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge