György Paál
Budapest University of Technology and Economics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by György Paál.
American Journal of Neuroradiology | 2011
Zsolt Kulcsar; Ádám Ugron; M Marosfoi; Zsolt Berentei; György Paál; István Szikora
BACKGROUND AND PURPOSE: Cerebral aneurysms are preferentially located at arterial curvatures and bifurcations that are exposed to major hemodynamic forces, increasingly implicated in the life cycle of aneurysms. By observing the natural history of aneurysm formation from its preaneurysm state, we aimed to examine the hemodynamic microenvironment related to aneurysm initiation at certain arterial segments later developing an aneurysm. MATERIALS AND METHODS: The 3 patients included in the study underwent cerebral angiography with 3D reconstruction before a true aneurysm developed. The arterial geometries obtained from the 3D-DSA models were used for flow simulation by using finite-volume modeling. The WSS and SWSSG at the site of the future aneurysm and the flow characteristics of the developed aneurysms were analyzed. RESULTS: The analyzed regions of interest demonstrated significantly increased WSS, accompanied by an increased positive SWSSG in the adjacent proximal region. The WSS reached values of >5 times the temporal average values of the parent vessel, whereas the SWSSG approximated or exceeded peaks of 40 Pa/mm in all 3 cases. All patients developed an aneurysm within 2 years, 1 of which ruptured. CONCLUSIONS: The results of this hemodynamic study, in accordance with the clinical follow-up, suggest that the combination of high WSS and high positive SWSSG focused on a small segment of the arterial wall may have a role in the initiation process of aneurysm formation.
Neuroradiology | 2008
István Szikora; György Paál; Ádám Ugron; Ferenc Nasztanovics; M Marosfoi; Zsolt Berentei; Zsolt Kulcsar; Wickly Lee; Imre Bojtár; István Nyáry
IntroductionThis study was performed to assess the effect of aneurysm geometry on parameters that may have an impact on the natural history of intracranial aneurysms, such as intraaneurysmal flow pressure and shear stress.MethodsFlow was simulated in 21 randomly selected aneurysms using finite volume modeling. Ten aneurysms were classified as side-wall aneurysms, with either single-sided or circumferential involvement of the parent artery wall, and 11 as bifurcation aneurysms (symmetric or asymmetric), with an axis either perpendicular or parallel to the parent artery. The flow patterns were classified as either jet or vortex types (with regular or irregular vortex flow). Pressures and shear stresses were characterized as evenly or unevenly distributed over the aneurysm wall and neck.ResultsAll side-wall and four of the bifurcation aneurysms with a perpendicular axis had a vortex type flow pattern and seven bifurcation aneurysms with a parallel axis (four symmetric and two asymmetric) had a jet flow pattern. Jet type flow was associated with an uneven pressure distribution in seven out of seven aneurysms. Vortex type flow resulted in an even pressure distribution in five out of six aneurysms with an irregular flow pattern and six out of eight with a regular flow pattern. No firm relationship could be established between any geometrical type and shear stress distribution. Only 1 of 14 aneurysms with a perpendicular axis, but 4 of 7 aneurysms with a parallel axis, had ruptured.ConclusionAneurysm geometry does have an impact on flow conditions. Aneurysms with a main axis parallel to the parent artery have a tendency to have a jet flow pattern and uneven distribution of unsteady pressure. These aneurysms may have a higher rate of rupture as than those with a main axis perpendicular to the parent artery.
Journal of Theoretical Biology | 2015
Gábor Závodszky; György Károlyi; György Paál
The behaviour of biological fluid flows is often investigated in medical practice to draw conclusions on the physiological or pathological conditions of the considered organs. One area where such investigations are proven to be useful is the flow-related formation and growth of different pathologic malformations of the cerebro-vascular system. In this work, a detailed study is presented on the effect of a cerebral aneurysm on blood transport inside a human brain artery segment. This malformation causes strong flow instabilities that drives the flow system towards chaotic behaviour. The emerging fractal structure and some of its measurable properties have been explored using a method that makes the measurement of these properties feasible even in complicated large three dimensional data sets. We find that, from the investigated chaos parameters, the information dimension turns out to be the most reliable parameter to characterise chaotic advection in the vicinity of the aneurysm sac. We propose that properties of chaotic mixing close to aneurysms might be relevant for the condition of this pathologic malformation.
Interventional Medicine and Applied Science | 2014
Ádám Ugron; István Szikora; György Paál
Flow diverters (FDs) have been successfully applied in the recent decade to the treatment of intracranial aneurysms by impairing the communication between the flows in the parent artery and the aneurysm and, thus, the blood within the aneurysm sac. It would be desirable to have a simple and accurate computational method to follow the changes in the peri- and intraaneurysmal flow caused by the presence of FDs. The detailed flow simulation around the intricate wire structure of the FDs has three disadvantages: need for high amount of computational resources and highly skilled professionals to prepare the computational grid, and also the lack of validation that makes the invested effort questionable. In this paper, we propose a porous layer method to model the hydraulic resistance (HR) of one or several layers of the FDs. The basis of this proposal is twofold: first, from an application point of view, the only interesting parameter regarding the function of the FD is its HR; second, we have developed a method to measure the HR with a simple apparatus. We present the results of these measurements and demonstrate their utility in numerical simulations of patient-specific aneurysm simulations.
Interventional Medicine and Applied Science | 2012
Ádám Ugron; István Szikora; György Paál
Abstract Endovascular treatment of intracranial aneurysms is a routine medical practice. The most widely used technique is the packing the aneurysm sac with an embolic material. To gain deeper understanding in the effects of specific treatment methods, the intra-aneurysmal haemodynamics are studied with the help of patient-specific computational models. Numerical simulations demonstrated that embolisation with liquid polymer results in an overall decrease of the wall shear stress and pressure in the aneurysm region. Within the range of clinically relevant packing density, simulation of coil embolisation showed homogenisation and decrease of the wall loads on the aneurysm sac. Increasing the packing density above 20% produces little or no further reduction of intra-aneurysmal flow. Sufficient packing of the aneurysm sac results in significant intra-aneurysmal flow decrease associated with reduced wall loads but locally increased pressure or wall shear stress zones may appear depending on the specific vesse...
Archive | 2016
Gábor Závodszky; György Károlyi; István Szikora; György Paál
Computing the emerging flow in blood vessel sections by means of computational fluid dynamics is an often applied practice in hemodynamics research. One particular area for such investigations is related to the cerebral aneurysms, since their formation, pathogenesis and the risk of a potential rupture may be flow-related. We present a study on the behavior of small advected particles in cerebral vessel sections in the presence of aneurysmal malformations. These malformations cause strong flow disturbances driving the system towards chaotic behavior. Within these flows the particle trajectories can form a fractal structure, the properties of which are measurable by quantitative techniques. The measurable quantities are well established chaotic properties, such as the Lyapunov exponent, escape rate and information dimension. Based on these findings, we propose that chaotic flow within blood vessels in the vicinity of the aneurysm might be relevant for the pathogenesis and development of this malformation.
Computers in Biology and Medicine | 2018
Benjámin Csippa; Gábor Závodszky; György Paál; István Szikora
Aneurysm pathogenesis is thought to be strongly linked with hemodynamical effects. According to our current knowledge, the formation process is initiated by locally disturbed flow conditions. The aim of the current work is to provide a numerical investigation on the role of the flow field at the stage of the initiation, before the aneurysm formation. Digitally reconstructed pre-aneurysmal geometries are used to examine correlations of the flow patterns to the location and direction of the aneurysms formed later. We argue that a very specific rotational flow pattern is present in all the investigated cases marking the location of the later aneurysm and that these flow patterns provide the mechanical load on the wall that can lead to a destructive remodelling in the vessel wall. Furthermore, these patterns induce elevated vessel surface related variables (e.g. wall shear stress (WSS), wall shear stress gradient (WSSG) and oscillatory shear index (OSI)), in agreement with the previous findings. We emphasise that the analysis of the flow patterns provides a deeper insight and a more robust numerical methodology compared to the sole examination of the aforementioned surface quantities.
Cardiovascular Engineering and Technology | 2018
Philipp Berg; Samuel Voß; Sylvia Saalfeld; Gábor Janiga; Aslak W. Bergersen; Kristian Valen-Sendstad; Jan Bruening; Leonid Goubergrits; Andreas Spuler; Nicole M Cancelliere; David A. Steinman; Vitor Mendes Pereira; Tin Lok Chiu; Anderson Chun On Tsang; Bong Jae Chung; Juan R. Cebral; Salvatore Cito; Jordi Pallarès; Gabriele Copelli; Benjamin Csippa; György Paál; Soichiro Fujimura; Hiroyuki Takao; Simona Hodis; Georg Hille; Christof Karmonik; Saba Elias; Kerstin Kellermann; Muhammad Owais Khan; Alison L. Marsden
PurposeAdvanced morphology analysis and image-based hemodynamic simulations are increasingly used to assess the rupture risk of intracranial aneurysms (IAs). However, the accuracy of those results strongly depends on the quality of the vessel wall segmentation.MethodsTo evaluate state-of-the-art segmentation approaches, the Multiple Aneurysms AnaTomy CHallenge (MATCH) was announced. Participants carried out segmentation in three anonymized 3D DSA datasets (left and right anterior, posterior circulation) of a patient harboring five IAs. Qualitative and quantitative inter-group comparisons were carried out with respect to aneurysm volumes and ostia. Further, over- and undersegmentation were evaluated based on highly resolved 2D images. Finally, clinically relevant morphological parameters were calculated.ResultsBased on the contributions of 26 participating groups, the findings reveal that no consensus regarding segmentation software or underlying algorithms exists. Qualitative similarity of the aneurysm representations was obtained. However, inter-group differences occurred regarding the luminal surface quality, number of vessel branches considered, aneurysm volumes (up to 20%) and ostium surface areas (up to 30%). Further, a systematic oversegmentation of the 3D surfaces was observed with a difference of approximately 10% to the highly resolved 2D reference image. Particularly, the neck of the ruptured aneurysm was overrepresented by all groups except for one. Finally, morphology parameters (e.g., undulation and non-sphericity) varied up to 25%.ConclusionsMATCH provides an overview of segmentation methodologies for IAs and highlights the variability of surface reconstruction. Further, the study emphasizes the need for careful processing of initial segmentation results for a realistic assessment of clinically relevant morphological parameters.
Physics of Fluids | 2017
Péter Tamás Nagy; György Paál
Four methods of varying complexity to investigate jet instability were tested on a plane jet and compared with CFD results. A unified treatment that includes the acoustic excitation in an incompressible simulation was developed. It turned out that the more sophisticated methods have no real advantage over the well-established Orr-Sommerfeld and Rayleigh equations. A new mode with extremely high growth rates in the vicinity of the nozzle exit was discovered.
VII European Congress on Computational Methods in Applied Sciences and Engineering | 2016
Gábor Závodszky; Roland Joó-Kovács; György Paál; István Szikora
The CFD simulation of the emergent flow field inside vessel malformations is a generally employed technique during research processes. The results of an accurate numeric calculation might be used for risk assessment or for predictive purposes, such as the analysis of the possible pathogenesis. Even though several generally accepted numerical methods exist which are applied frequently during research, the current mainstream methods carry specific properties that significantly limit their application in everyday medical practice. We propose a well-selected set of methodologies to provide a complete solution that is able overcome several of these shortcomings by making the preparation of the numerical mesh more automated while reducing the average computational time to a clinically relevant time-scale on a single desktop workstation. A study involving 10 patients with intracranial aneurysm was carried out using the presented fast simulation method. The sole human interaction required for the process, that is, the selection of the boundary conditions might add a few minutes at most to the total investigation time required for one patient. The possibility of modelling the effects of a virtually implemented stent without losing the performance benefits is also discussed.