Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gyorgy Snell is active.

Publication


Featured researches published by Gyorgy Snell.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta.

Morihisa Saitoh; Jun Kunitomo; Eiji Kimura; Yoji Hayase; Hiromi Kobayashi; Noriko Uchiyama; Tomohiro Kawamoto; Toshimasa Tanaka; Clifford D. Mol; Douglas R. Dougan; Garret Textor; Gyorgy Snell; Fumio Itoh

Glycogen synthase kinase-3beta (GSK-3beta) is implicated in abnormal hyperphosphorylation of tau protein and its inhibitors are expected to be a promising therapeutic agents for the treatment of Alzheimers disease. Here we report design, synthesis and structure-activity relationships of a novel series of oxadiazole derivatives as GSK-3beta inhibitors. Among these inhibitors, compound 20x showed highly selective and potent GSK-3beta inhibitory activity in vitro and its binding mode was determined by obtaining the X-ray co-crystal structure of 20x and GSK-3beta.


Journal of Biological Chemistry | 2003

Crystal structure of Pasteurella haemolytica ferric ion-binding protein A reveals a novel class of bacterial iron-binding proteins

Stephen R. Shouldice; Douglas R. Dougan; Pamela A. Williams; Robert J. Skene; Gyorgy Snell; Daniel Scheibe; Shane D. Kirby; David J. Hosfield; Duncan E. McRee; Anthony B. Schryvers; Leslie W. Tari

Pasteurellosis caused by the Gram-negative pathogen Pasteurella haemolytica is a serious disease leading to death in cattle. To scavenge growth-limiting iron from the host, the pathogen utilizes the periplasmic ferric ion-binding protein A (PhFbpA) as a component of an ATP-binding cassette transport pathway. We report the 1.2-Å structure of the iron-free (apo) form of PhFbpA, which is a member of the transferrin structural superfamily. The protein structure adopts a closed conformation, allowing us to reliably assign putative iron-coordinating residues. Based on our analysis, PhFbpA utilizes a unique constellation of binding site residues and anions to octahedrally coordinate an iron atom. A surprising finding in the structure is the presence of two formate anions on opposite sides of the iron-binding pocket. The formate ions tether the N- and C-terminal domains of the protein and stabilize the closed structure, also providing clues as to probable candidates for synergistic anions in the iron-loaded state. PhFbpA represents a new class of bacterial iron-binding proteins.


Bioorganic & Medicinal Chemistry | 2012

A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: design and synthesis of benzylpyrazole acylsulfonamides.

Kentaro Rikimaru; Takeshi Wakabayashi; Hidenori Abe; Hiroshi Imoto; Tsuyoshi Maekawa; Osamu Ujikawa; Katsuhito Murase; Takanori Matsuo; Mitsuharu Matsumoto; Chisako Nomura; Hiroko Tsuge; Naoto Arimura; Kazutoshi Kawakami; Junichi Sakamoto; Miyuki Funami; Clifford D. Mol; Gyorgy Snell; Kenneth A. Bragstad; Bi-Ching Sang; Douglas R. Dougan; Toshimasa Tanaka; Nozomi Katayama; Yoshiaki Horiguchi; Yu Momose

Herein, we describe the design, synthesis, and structure-activity relationships of novel benzylpyrazole acylsulfonamides as non-thiazolidinedione (TZD), non-carboxylic-acid-based peroxisome proliferator-activated receptor (PPAR) γ agonists. Docking model analysis of in-house weak agonist 2 bound to the reported PPARγ ligand binding domain suggested that modification of the carboxylic acid of 2 would help strengthen the interaction of 2 with the TZD pocket and afford non-carboxylic-acid-based agonists. In this study, we used an acylsulfonamide group as the ring-opening analog of TZD as an isosteric replacement of carboxylic acid moiety of 2; further, preliminary modification of the terminal alkyl chain on the sulfonyl group gave the lead compound 3c. Subsequent optimization of the resulting compound gave the potent agonists 25c, 30b, and 30c with high metabolic stability and significant antidiabetic activity. Further, we have described the difference in binding mode of the carboxylic-acid-based agonist 1 and acylsulfonamide 3d.


Bioorganic & Medicinal Chemistry Letters | 2011

Design, synthesis, and structure-activity relationships of spirolactones bearing 2-ureidobenzothiophene as acetyl-CoA carboxylases inhibitors.

Tohru Yamashita; Makoto Kamata; Satoshi Endo; Mitsuo Yamamoto; Keiko Kakegawa; Hiroyuki Watanabe; Katsuhiko Miwa; Toru Yamano; Masaaki Funata; Jyunichi Sakamoto; Akiyoshi Tani; Clifford D. Mol; Hua Zou; Douglas R. Dougan; Bi-Ching Sang; Gyorgy Snell; Kohji Fukatsu

The co-crystal structure of the human acetyl-coenzyme A 2 (ACC2) carboxyl transferase domain and the reported compound CP-640186 (1b) suggested that two carbonyl groups are essential for potent ACC2 inhibition. By focusing on enhancing the interactions between the two carbonyl groups and the amino acid residues Gly(2162) and Glu(2230), we used ligand- and structure-based drug design to discover spirolactones bearing a 2-ureidobenzothiophene moiety.


ACS Medicinal Chemistry Letters | 2016

Discovery of TAK-272: A Novel, Potent, and Orally Active Renin Inhibitor

Yasuhiro Imaeda; Hidekazu Tokuhara; Yoshiyuki Fukase; Ray Kanagawa; Yumiko Kajimoto; Keiji Kusumoto; Mitsuyo Kondo; Gyorgy Snell; Craig A. Behnke; Takanobu Kuroita

The aspartic proteinase renin is an attractive target for the treatment of hypertension and cardiovascular/renal disease such as chronic kidney disease and heart failure. We introduced an S1′ site binder into the lead compound 1 guided by structure-based drug design (SBDD), and further optimization of physicochemical properties led to the discovery of benzimidazole derivative 10 (1-(4-methoxybutyl)-N-(2-methylpropyl)-N-[(3S,5R)-5-(morpholin-4-yl)carbonylpiperidin-3-yl]-1H-benzimidazole-2-carboxamide hydrochloride, TAK-272) as a highly potent and orally active renin inhibitor. Compound 10 demonstrated good oral bioavailability (BA) and long-lasting efficacy in rats. Compound 10 is currently in clinical trials.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis, and biological activities of novel hexahydropyrazino[1,2-a]indole derivatives as potent inhibitors of apoptosis (IAP) proteins antagonists with improved membrane permeability across MDR1 expressing cells.

Zenyu Shiokawa; Kentaro Hashimoto; Bunnai Saito; Yuya Oguro; Hiroyuki Sumi; Masato Yabuki; Mie Yoshimatsu; Yohei Kosugi; Yasuyuki Debori; Nao Morishita; Douglas R. Dougan; Gyorgy Snell; Sei Yoshida; Tomoyasu Ishikawa

We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate.


Bioorganic & Medicinal Chemistry | 2016

Discovery and optimization of 1,7-disubstituted-2,2-dimethyl-2,3-dihydroquinazolin-4(1 H )-ones as potent and selective PKC θ inhibitors

Taisuke Katoh; Takafumi Takai; Takafumi Yukawa; Tetsuya Tsukamoto; Etsurou Watanabe; Hideyuki Mototani; Takeo Arita; Hiroki Hayashi; Hideyuki Nakagawa; Michael G. Klein; Hua Zou; Bi-Ching Sang; Gyorgy Snell; Yoshihisa Nakada

A high-throughput screening campaign helped us to identify an initial lead compound (1) as a protein kinase C-θ (PKCθ) inhibitor. Using the docking model of compound 1 bound to PKCθ as a model, structure-based drug design was employed and two regions were identified that could be explored for further optimization, i.e., (a) a hydrophilic region around Thr442, unique to PKC family, in the inner part of the hinge region, and (b) a lipophilic region at the forefront of the ethyl moiety. Optimization of the hinge binder led us to find 1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-one as a potent and selective hinge binder, which resulted in the discovery of compound 5. Filling the lipophilic region with a suitable lipophilic substituent boosted PKCθ inhibitory activity and led to the identification of compound 10. The co-crystal structure of compound 10 bound to PKCθ confirmed that both the hydrophilic and lipophilic regions were fully utilized. Further optimization of compound 10 led us to compound 14, which demonstrated an improved pharmacokinetic profile and inhibition of IL-2 production in a mouse.


Bioorganic & Medicinal Chemistry | 2012

Structure-activity relationships and key structural feature of pyridyloxybenzene-acylsulfonamides as new, potent, and selective peroxisome proliferator-activated receptor (PPAR) γ Agonists.

Kentaro Rikimaru; Takeshi Wakabayashi; Hidenori Abe; Taisuke Tawaraishi; Hiroshi Imoto; Jinichi Yonemori; Hideki Hirose; Katsuhito Murase; Takanori Matsuo; Mitsuharu Matsumoto; Chisako Nomura; Hiroko Tsuge; Naoto Arimura; Kazutoshi Kawakami; Junichi Sakamoto; Miyuki Funami; Clifford D. Mol; Gyorgy Snell; Kenneth A. Bragstad; Bi-Ching Sang; Douglas R. Dougan; Toshimasa Tanaka; Nozomi Katayama; Yoshiaki Horiguchi; Yu Momose

In our search for a novel class of non-TZD, non-carboxylic acid peroxisome proliferator-activated receptor (PPAR) γ agonists, we explored alternative lipophilic templates to replace benzylpyrazole core of the previously reported agonist 1. Introduction of a pentylsulfonamide group into arylpropionic acids derived from previous in-house PPARγ ligands succeeded in the identification of 2-pyridyloxybenzene-acylsulfonamide 2 as a lead compound. Docking studies of compound 2 suggested that a substituent para to the central benzene ring should be incorporated to effectively fill the Y-shaped cavity of the PPARγ ligand-binding domain (LBD). This strategy led to significant improvement of PPARγ activity. Further optimization to balance in vitro activity and metabolic stability allowed the discovery of the potent, selective and orally efficacious PPARγ agonist 8f. Structure-activity relationship study as well as detailed analysis of the binding mode of 8f to the PPARγ-LBD revealed the essential structural features of this series of ligands.


Embo Molecular Medicine | 2018

Anti‐tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC‐dependent vulnerability

Kenichi Iwai; Masahiro Yaguchi; Kazuho Nishimura; Yukiko Yamamoto; Toshiya Tamura; Daisuke Nakata; Ryo Dairiki; Yoichi Kawakita; Ryo Mizojiri; Yoshiteru Ito; Moriteru Asano; Hironobu Maezaki; Yusuke Nakayama; Misato Kaishima; Kozo Hayashi; Mika Teratani; Shuichi Miyakawa; Misa Iwatani; Maki Miyamoto; Michael G. Klein; Wes Lane; Gyorgy Snell; Richard Tjhen; Xingyue He; Sai Pulukuri; Toshiyuki Nomura

The modulation of pre‐mRNA splicing is proposed as an attractive anti‐neoplastic strategy, especially for the cancers that exhibit aberrant pre‐mRNA splicing. Here, we discovered that T‐025 functions as an orally available and potent inhibitor of Cdc2‐like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T‐025 reduced CLK‐dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo. Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive‐associated biomarker of T‐025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T‐025 treatment. MYC activation, which altered pre‐mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti‐tumor efficacy of T‐025 in an allograft model of spontaneous, MYC‐driven breast cancer, at well‐tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC‐driven cancer patients.


Bioorganic & Medicinal Chemistry | 2017

Discovery of a novel B-cell lymphoma 6 (BCL6)–corepressor interaction inhibitor by utilizing structure-based drug design

Takeshi Yasui; Takeshi Yamamoto; Nozomu Sakai; Kouhei Asano; Takafumi Takai; Yayoi Yoshitomi; Melinda Davis; Terufumi Takagi; Kotaro Sakamoto; Satoshi Sogabe; Yusuke Kamada; Weston Lane; Gyorgy Snell; Masashi Iwata; Masayuki Goto; Hiroshi Inooka; Junichi Sakamoto; Yoshihisa Nakada; Yasuhiro Imaeda

B-cell lymphoma 6 (BCL6) is a transcriptional repressor that can form complexes with corepressors via protein-protein interactions (PPIs). The complexes of BCL6 and corepressors play an important role in the formation of germinal centers (GCs), and differentiation and proliferation of lymphocytes. Therefore, BCL6-corepressor interaction inhibitors would be drug candidates for managing autoimmune diseases and cancer. Starting from high-throughput screening hits 1a and 2a, we identified a novel BCL6-corepressor interaction inhibitor 8c (cell-free enzyme-linked immunosorbent assay [ELISA] IC50=0.10µM, cell-based mammalian two-hybrid [M2H] assay IC50=0.72µM) by utilizing structure-based drug design (SBDD) based on an X-ray crystal structure of 1a bound to BCL6. Compound 8c also showed a good pharmacokinetic profile, which was acceptable for both in vitro and in vivo studies.

Collaboration


Dive into the Gyorgy Snell's collaboration.

Top Co-Authors

Avatar

Douglas R. Dougan

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Clifford D. Mol

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Bi-Ching Sang

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Andrew Walling Drake

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Gregory Landes

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kathleen Ann Elias

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Mary Haak-Frendscho

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Vinay Bhaskar

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hua Zou

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Toshimasa Tanaka

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge