Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gytis Dudas is active.

Publication


Featured researches published by Gytis Dudas.


Science | 2014

Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

Stephen K. Gire; Augustine Goba; Kristian G. Andersen; Rachel Sealfon; Daniel J. Park; Lansana Kanneh; Simbirie Jalloh; Mambu Momoh; Mohamed Fullah; Gytis Dudas; Shirlee Wohl; Lina M. Moses; Nathan L. Yozwiak; Sarah M. Winnicki; Christian B. Matranga; Christine M. Malboeuf; James Qu; Adrianne D. Gladden; Stephen F. Schaffner; Xiao Yang; Pan Pan Jiang; Mahan Nekoui; Andres Colubri; Moinya Ruth Coomber; Mbalu Fonnie; Alex Moigboi; Michael Gbakie; Fatima K. Kamara; Veronica Tucker; Edwin Konuwa

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


Cell | 2015

Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

Daniel J. Park; Gytis Dudas; Shirlee Wohl; Augustine Goba; Shannon Whitmer; Kristian G. Andersen; Rachel Sealfon; Jason T. Ladner; Jeffrey R. Kugelman; Christian B. Matranga; Sarah M. Winnicki; James Qu; Stephen K. Gire; Adrianne Gladden-Young; Simbirie Jalloh; Dolo Nosamiefan; Nathan L. Yozwiak; Lina M. Moses; Pan-Pan Jiang; Aaron E. Lin; Stephen F. Schaffner; Brian Bird; Jonathan S. Towner; Mambu Mamoh; Michael Gbakie; Lansana Kanneh; David Kargbo; James L.B. Massally; Fatima K. Kamara; Edwin Konuwa

Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


eLife | 2014

Integrating influenza antigenic dynamics with molecular evolution

Trevor Bedford; Marc A. Suchard; Philippe Lemey; Gytis Dudas; Vicky Gregory; Alan Hay; John W. McCauley; Colin A. Russell; Derek J. Smith; Andrew Rambaut

Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001


Nature | 2016

The evolution of Ebola virus: Insights from the 2013–2016 epidemic

Edward C. Holmes; Gytis Dudas; Andrew Rambaut; Kristian G. Andersen

The 2013–2016 epidemic of Ebola virus disease in West Africa was of unprecedented magnitude and changed our perspective on this lethal but sporadically emerging virus. This outbreak also marked the beginning of large-scale real-time molecular epidemiology. Here, we show how evolutionary analyses of Ebola virus genome sequences provided key insights into virus origins, evolution and spread during the epidemic. We provide basic scientists, epidemiologists, medical practitioners and other outbreak responders with an enhanced understanding of the utility and limitations of pathogen genomic sequencing. This will be crucially important in our attempts to track and control future infectious disease outbreaks.


PLOS Currents | 2014

Phylogenetic Analysis of Guinea 2014 EBOV Ebolavirus Outbreak

Gytis Dudas; Andrew Rambaut

Members of the genus Ebolavirus have caused outbreaks of haemorrhagic fever in humans in Africa. The most recent outbreak in Guinea, which began in February of 2014, is still ongoing. Recently published analyses of sequences from this outbreak suggest that the outbreak in Guinea is caused by a divergent lineage of Zaire ebolavirus. We report evidence that points to the same Zaire ebolavirus lineage that has previously caused outbreaks in the Democratic Republic of Congo, the Republic of Congo and Gabon as the culprit behind the outbreak in Guinea.


Nature | 2017

Genomic epidemiology reveals multiple introductions of Zika virus into the United States

Nathan D. Grubaugh; Jason T. Ladner; Moritz U. G. Kraemer; Gytis Dudas; Amanda L. Tan; Karthik Gangavarapu; Michael R. Wiley; Stephen White; Julien Thézé; Diogo M. Magnani; Karla Prieto; Daniel Reyes; Andrea M. Bingham; Lauren M. Paul; Refugio Robles-Sikisaka; Glenn Oliveira; Darryl Pronty; Carolyn M. Barcellona; Hayden C. Metsky; Mary Lynn Baniecki; Kayla G. Barnes; Bridget Chak; Catherine A. Freije; Adrianne Gladden-Young; Andreas Gnirke; Cynthia Y. Luo; Bronwyn MacInnis; Christian B. Matranga; Daniel J. Park; James Qu

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016—several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Nature | 2017

Virus genomes reveal factors that spread and sustained the Ebola epidemic

Gytis Dudas; Luiz Max Carvalho; Trevor Bedford; Andrew J. Tatem; Guy Baele; Nuno Rodrigues Faria; Daniel J. Park; Jason T. Ladner; Armando Arias; Danny A. Asogun; Filip Bielejec; Sarah Caddy; Matthew Cotten; Jonathan D’ambrozio; Simon Dellicour; Antonino Di Caro; Joseph W. Diclaro; Sophie Duraffour; Michael J. Elmore; Lawrence S. Fakoli; Ousmane Faye; Merle L. Gilbert; Sahr M. Gevao; Stephen K. Gire; Adrianne Gladden-Young; Andreas Gnirke; Augustine Goba; Donald S. Grant; Bart L. Haagmans; Julian A. Hiscox

The 2013–2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Cell Host & Microbe | 2015

Evolution and Spread of Ebola Virus in Liberia, 2014–2015

Jason T. Ladner; Michael R. Wiley; Suzanne Mate; Gytis Dudas; Karla Prieto; Sean Lovett; Elyse R. Nagle; Brett Beitzel; Merle L. Gilbert; Lawrence S. Fakoli; Joseph W. Diclaro; Randal J. Schoepp; Joseph N. Fair; Jens H. Kuhn; Lisa E. Hensley; Daniel J. Park; Pardis C. Sabeti; Andrew Rambaut; Mariano Sanchez-Lockhart; Fatorma K. Bolay; Jeffrey R. Kugelman; Gustavo Palacios

The 2013-present Western African Ebola virus disease (EVD) outbreak is the largest ever recorded with >28,000 reported cases. Ebola virus (EBOV) genome sequencing has played an important role throughout this outbreak; however, relatively few sequences have been determined from patients in Liberia, the second worst-affected country. Here, we report 140 EBOV genome sequences from the second wave of the Liberian outbreak and analyze them in combination with 782 previously published sequences from throughout the Western African outbreak. While multiple early introductions of EBOV to Liberia are evident, the majority of Liberian EVD cases are consistent with a single introduction, followed by spread and diversification within the country. Movement of the virus within Liberia was widespread, and reintroductions from Liberia served as an important source for the continuation of the already ongoing EVD outbreak in Guinea. Overall, little evidence was found for incremental adaptation of EBOV to the human host.


eLife | 2016

The global antigenic diversity of swine influenza A viruses

Nicola S. Lewis; Colin A. Russell; Pinky Langat; Tavis K. Anderson; Kathryn Berger; Filip Bielejec; David F. Burke; Gytis Dudas; Judith M. Fonville; Ron Am Fouchier; Paul Kellam; Björn Koel; Philippe Lemey; Tung Nguyen; Bundit Nuansrichy; J. S. Malik Peiris; Takehiko Saito; Gaëlle Simon; Eugene Skepner; Nobuhiro Takemae; Richard J. Webby; Kristien Van Reeth; Sharon M. Brookes; Lars Erik Larsen; Simon J. Watson; Ian H. Brown; Amy L. Vincent

Swine influenza presents a substantial disease burden for pig populations worldwide and poses a potential pandemic threat to humans. There is considerable diversity in both H1 and H3 influenza viruses circulating in swine due to the frequent introductions of viruses from humans and birds coupled with geographic segregation of global swine populations. Much of this diversity is characterized genetically but the antigenic diversity of these viruses is poorly understood. Critically, the antigenic diversity shapes the risk profile of swine influenza viruses in terms of their epizootic and pandemic potential. Here, using the most comprehensive set of swine influenza virus antigenic data compiled to date, we quantify the antigenic diversity of swine influenza viruses on a multi-continental scale. The substantial antigenic diversity of recently circulating viruses in different parts of the world adds complexity to the risk profiles for the movement of swine and the potential for swine-derived infections in humans. DOI: http://dx.doi.org/10.7554/eLife.12217.001


Virus Evolution | 2016

Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases

Armando Arias; Simon J. Watson; Danny A. Asogun; Ekaete Tobin; Jia Lu; My V.T. Phan; Umaru Jah; Raoul Emeric Guetiya Wadoum; Luke W. Meredith; Lucy Thorne; Sarah Caddy; Alimamy Tarawalie; Pinky Langat; Gytis Dudas; Nuno Rodrigues Faria; Simon Dellicour; Abdul Kamara; Brima Kargbo; Brima Osaio Kamara; Sahr M. Gevao; Daniel Cooper; Matthew Newport; Peter Horby; Jake Dunning; Foday Sahr; Tim Brooks; Andrew J. H. Simpson; Elisabetta Groppelli; Guoying Liu; Nisha Mulakken

Abstract To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiological information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public health epidemic control efforts.

Collaboration


Dive into the Gytis Dudas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor Bedford

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason T. Ladner

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pinky Langat

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Simon J. Watson

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge