Gyu-Jin Rho
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gyu-Jin Rho.
Reproduction | 2008
Byeong-Gyun Jeon; Gianfranco Coppola; Steven D. Perrault; Gyu-Jin Rho; Dean H. Betts; W. Allan King
The poor outcome of somatic cell nuclear transfer (SCNT) is thought to be a consequence of incomplete reprogramming of the donor cell. The objective of this study was to investigate the effects of treatment with S-adenosylhomocysteine (SAH) a DNA demethylation agent, on DNA methylation levels and X-chromosome inactivation status of bovine female fibroblast donor cells and the subsequent impact on developmental potential after SCNT. Compared with non-treated controls, the cells treated with SAH revealed (i) significantly (P<0.05) reduced global DNA methylation, (ii) significantly (approximately 1.5-fold) increased telomerase activity, (iii) diminished distribution signals of methylated histones H3-3mK9 and H3-3mK27 on the presumptive inactive X-chromosome (Xi), (iv) alteration in the replication pattern of the Xi, and (v) elevation of transcript levels for X-chromosome linked genes, ANT3, MECP2, XIAP, XIST, and HPRT. SCNT embryos produced with SAH-treated donor cells compared with those derived from untreated donor cells revealed (i) similar cleavage frequencies, (ii) significant elevation in the frequencies of development of cleaved embryos to hatched blastocyst stage, and (iii) 1.5-fold increase in telomerase activity. We concluded that SAH induces global DNA demethylation that partially reactivates the Xi, and that a hypomethylated genome may facilitate the nuclear reprogramming process.
Stem Cells and Development | 2011
Seung-Hee Song; Basavarajappa Mohana Kumar; Eunju Kang; Yeon-Mi Lee; Tae Ho Kim; Sun-A Ock; Sung-Lim Lee; Byeong-Gyun Jeon; Gyu-Jin Rho
The present study evaluated the alkaline phosphatase activity, cell cycle stage, expression of markers and early transcriptional factors, and in vitro differentiation into selected cell lineages of porcine stem/stromal cells (SCs) isolated from skin (SSCs), adipose, and ovarian (OSCs) tissues. Skin and adipose SCs were isolated from a 6-month-old miniature pig, whereas OSCs were isolated from a newly born piglet. Isolated cells exhibited fibroblast-like cell population with significant renewal capacity and formed colonies by cells out-growth. All cells were positive for alkaline phosphatase activity and showed a relatively lower population at G0/G1 phase of the cell cycle. SCs derived from all tissues were strongly positive for cell surface markers, such as CD29, CD44, CD90, and vimentin. Further, relatively lower expression of cytokeratin and immunophenotype markers, such as major histocompatibility complex II (MHCII) and swine leukocyte antigen (SLA), was also observed. SCs derived from all tissues positively expressed the transcription factors, such as Oct-3/4, Nanog, and Sox-2. After induction, all SCs successfully differentiated into osteocytes and adipocytes and expressed the lineage specific marker genes. Further, cells from all tissues exhibited their potential for in vitro oogenesis with morphological changes and expression of markers during the germ-cell formation, namely Oct-4, growth differentiation factor 9b, c-Mos, Vasa, deleted in azoospermia-like gene, zona pellucida C, and follicle stimulating hormone receptor. Apart from basic features and selected lineage potential among all types of cells, OSCs possessed a greater ability to differentiate into the germ cell lineage in vitro.
Theriogenology | 1998
Gyu-Jin Rho; W.H. Johnson; K.J. Betteridge
The cellular composition and viability of intact, IVP embryos were compared with those of demi- and quarter-embryos produced by bisection of IVP morulae and blastocysts. Embryos were produced by established techniques from oocytes harvested from slaughterhouse ovaries. In Experiment 1, morulae at Day 6 or blastocysts at Day 7 were bisected on an inverted microscope using a microsurgical steel blade. Demi-embryos were then cultured without a zona pellucida until Day 8, when they were morphologically assessed for quality (viability). A higher proportion of demi-embryos made from blastocysts than from morulae were classified as viable (381/420, 91% vs 164/267, 61%; P < 0.001). In Experiment 2, only Day 7 blastocysts were bisected, and some of the resulting demi-embryos were bisected a second time 24 h later to produce quarter-embryos. The remaining demi-embryos, the quarter-embryos, and control intact embryos were cultured until Day 9, at which time they were assessed for quality and subjected to immunosurgery and differential staining to count inner cell mass (ICM) and trophectoderm cells. A higher proportion of demi-embryos than quarter-embryos was classified as viable (408/459, 89% vs 223/319, 70%, respectively; P < 0.001). Total cell numbers decreased with successive bisections, but the proportion of surviving cells found in the ICM was significantly (P < 0.05) higher in the best quality demi- and quarter-embryos (35 and 32%, respectively) than in the controls (22%). Transfer of all 12 quarter-embryos derived from 3 blastocysts, in pairs, into 6 recipient heifers resulted in 2 pregnancies, each with a single viable fetus at 90 d of gestation. The fetuses originated from 2 different blastocysts. The results suggest that bisection of intact IVP embryos into demi-embryos and bisection of those into quarter-embryos can increase the number of transferable embryos by as much as 178 and 235%, respectively.
Stem Cells International | 2016
Sun-A Ock; Raghavendra Baregundi Subbarao; Yeon-Mi Lee; Jeong-Hyeon Lee; Ryoung-Hoon Jeon; Sung-Lim Lee; Ji Kwon Park; Sun-Chul Hwang; Gyu-Jin Rho
Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] β and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFβ and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities.
International Journal of Molecular Sciences | 2015
Raghavendra Baregundi Subbarao; Imran Ullah; Eun-Jin Kim; Si-Jung Jang; Won-Jae Lee; Ryoung Hoon Jeon; Dawon Kang; Sung-Lim Lee; Bong-Wook Park; Gyu-Jin Rho
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of −80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Current Stem Cell Research & Therapy | 2016
Dinesh Bharti; Sharath Belame Shivakumar; Raghavendra Baregundi Subbarao; Gyu-Jin Rho
In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.
Stem Cells and Development | 2017
Imran Ullah; Ju-Mi Park; Young-Hoon Kang; June-Ho Byun; Dae-Geon Kim; Gyu-Jin Rho
Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 106 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.
International Journal of Medical Sciences | 2016
Iel-Yong Sung; Han-Na Son; Imran Ullah; Dinesh Bharti; Ju-Mi Park; Yeong-Cheol Cho; June-Ho Byun; Young-Hoon Kang; Su-Jin Sung; Jong-Woo Kim; Gyu-Jin Rho; Bong-Wook Park
The purpose of the present study was to investigate the in vitro cardiomyogenic differentiation potential of human dental follicle-derived stem cells (DFCs) under the influence of suberoylanilide hydroxamic acid (SAHA), a member of the histone deacetylase inhibitor family, and analyze the in vivo homing capacity of induced cardiomyocytes (iCMs) when transplanted systemically. DFCs from extracted wisdom teeth showed mesenchymal stem cell (MSC) characteristics such as plate adherent growing, expression of MSC markers (CD44, CD90, and CD105), and mesenchymal lineage-specific differentiation potential. Adding SAHA to the culture medium induced the successful in vitro differentiation of DFCs into cardiomyocytes. These iCMs expressed cardiomyogenic markers, including alpha-smooth muscle actin (α-SMA), cardiac muscle troponin T (TNNT2), Desmin, and cardiac muscle alpha actin (ACTC1), at both the mRNA and protein level. For the assessment of homing capacity, PKH26 labeled iCMs were intraperitoneally injected (1×106 cells in 100 µL of PBS) into the experimental mice, and the ratios of PKH26 positive cells to the total number of injected cells, in multiple organs were determined. The calculated homing ratios, 14 days after systemic cell transplantation, were 5.6 ± 1.0%, 3.6 ± 1.1%, and 11.6 ± 2.7% in heart, liver, and kidney respectively. There was no difference in the serum levels of interleukin-2 and interleukin-10 at 14 days after transplantation, between the experimental (iCM injected) and control (no injection or PBS injection) groups. These results demonstrate that DFCs can be an excellent source for cardiomyocyte differentiation and regeneration. Moreover, the iCMs can be delivered into heart muscle via systemic administration without eliciting inflammatory or immune response. This can serve as the pilot study for further investigations into the in vitro cardiomyogenic differentiation potential of DFCs under the influence of SAHA and the in vivo homing capacity of the iCMs into the heart muscle, when injected systemically.
International Journal of Medical Sciences | 2014
Young-Sool Hah; Hyun-Ho Joo; Young-Hoon Kang; Bong-Wook Park; Sun-Chul Hwang; Jong-Woo Kim; Iel-Yong Sung; Gyu-Jin Rho; Dong Kyun Woo; June-Ho Byun
We investigated the adipogenic activity of cultured human periosteal-derived cells and studied perioxisome proliferator-activated receptor (PPAR) ligand-mediated differentiation of cultured human periosteal-derived cells into osteoblasts. Periosteal-derived cells expressed adipogenic markers, including CCAAT/enhancer binding protein α (C/EBP- α), C/EBP-δ, aP2, leptin, LPL, and PPARγ. Lipid vesicles were formed in the cytoplasm of periosteal-derived cells. Thus, periosteal-derived cells have potential adipogenic activity. The PPARα and PPARγ agonists, WY14643 and pioglitazone, respectively, did not modulate alkaline phosphatase (ALP) activity in periosteal-derived cells during induced osteoblastic differentiation, however, the PPARα and PPARγ antagonists, GW6471 and T0070907, respectively, both decreased ALP activity in these cells. WY14643 did not affect, whereas pioglitazone enhanced, alizarin red-positive mineralization and calcium content in the periosteal-derived cells. GW6471 and T0070907 both decreased mineralization and calcium content. By RT-PCR, pioglitazone significantly increased ALP expression in periosteal-derived cells between culture day 3 and 2 weeks. Pioglitazone increased Runx2 expression after 3 days, which declined thereafter, but did not alter osteocalcin expression. Both of GW6471 and T0070907 decreased ALP mRNA expression. These results suggest that pioglitazone enhances osteoblastic differentiation of periosteal-derived cells by increasing Runx2 and ALP mRNA expression, and increasing mineralization. GW6471 and T0070907 inhibit osteoblastic differentiation of the periosteal-derived cells by decreasing ALP expression and mineralization in the periosteal-derived cells. In conclusion, although further study will be needed to clarify the mechanisms of PPAR-regulated osteogenesis, our results suggest that PPARγ agonist stimulates osteoblastic differentiation of cultured human periosteal-derived cells and PPARα and PPARγ antagonists inhibit osteoblastic differentiation in these cells.
International Journal of Medical Sciences | 2017
Young-Jin Han; Young-Hoon Kang; Sarath Belame Shivakumar; Dinesh Bharti; Young-Bum Son; Yong-Ho Choi; Won-Uk Park; June-Ho Byun; Gyu-Jin Rho; Bong-Wook Park
We previously described a novel tissue cryopreservation protocol to enable the safe preservation of various autologous stem cell sources. The present study characterized the stem cells derived from long-term cryopreserved dental pulp tissues (hDPSCs-cryo) and analyzed their differentiation into definitive endoderm (DE) and hepatocyte-like cells (HLCs) in vitro. Human dental pulp tissues from extracted wisdom teeth were cryopreserved as per a slow freezing tissue cryopreservation protocol for at least a year. Characteristics of hDPSCs-cryo were compared to those of stem cells from fresh dental pulps (hDPSCs-fresh). hDPSCs-cryo were differentiated into DE cells in vitro with Activin A as per the Wnt3a protocol for 6 days. These cells were further differentiated into HLCs in the presence of growth factors until day 30. hDPSCs-fresh and hDPSCs-cryo displayed similar cell growth morphology, cell proliferation rates, and mesenchymal stem cell character. During differentiation into DE and HLCs in vitro, the cells flattened and became polygonal in shape, and finally adopted a hepatocyte-like shape. The differentiated DE cells at day 6 and HLCs at day 30 displayed significantly increased DE- and hepatocyte-specific markers at the mRNA and protein level, respectively. In addition, the differentiated HLCs showed detoxification and glycogen storage capacities, indicating they could share multiple functions with real hepatocytes. These data conclusively show that hPDSCs-cryo derived from long-term cryopreserved dental pulp tissues can be successfully differentiated into DE and functional hepatocytes in vitro. Thus, preservation of dental tissues could provide a valuable source of autologous stem cells for tissue engineering.