Gyula Hadlaczky
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gyula Hadlaczky.
Molecular Genetics and Genomics | 1980
Dénes Dudits; Olga Fejér; Gyula Hadlaczky; Csaba Koncz; Gábor B. Lázár; Gábor Horváth
SummaryIn attempts at somatic transfer of plant genomes of reduced size, X-irradiated leaf protoplasts of parsley (Petroselinum hortense, 2n=22) were fused with cell culture protoplasts of a nuclear albino mutant of carrot (Daucus carota, 2n=18). Introduction of genes from the irradiated parsley nuclei into the carrot genome was shown by the correction of the albino defect and by the appearance of parsley isoenzymes in selected green tissues and plants. The cytological studies provided information on significant deviation from the amphidiploid chromosome number. The high frequency of cells with 2n=19, 2n=38 and regeneration of plants with 2n=19 chromosomes can indicate that the elimination of parsley chromosomes is incomplete. A correlation was found between the lethality of selected tissues and differentiated or undifferentiated stages of the cells.
Chromosome Research | 1999
Håkan Telenius; Anna Szeles; Judit Keresö; Erika Csonka; Tünde Praznovszky; Stephan Imreh; Alexisann Maxwell; Carl F. Perez; Jan I. Drayer; Gyula Hadlaczky
A 60-Mb murine chromosome consisting of murine pericentric satellite DNA and two bands of integrated marker and reporter genes has been generated de novo in a rodent/human hybrid cell line (mM2C1). This prototype mammalian artificial chromosome platform carries a normal centromere, and the expression of its β-galactosidase reporter gene has remained stable under selection for over 25 months. The novel chromosome was transferred by a modified microcell fusion method to mouse [L-M(TK−)], bovine (P46) and human (EJ30) cell lines. In all cases, the chromosome remained structurally and functionally intact under selection for periods exceeding 3 months from the time of transfer into the new host. In addition, the chromosome was retained in three first- generation tumours when L-M(TK−) cells containing the chromosome were xenografted in severe combined immunodeficiency mice. These data support that a murine satellite DNA-based artificial chromosome can be used as a functional mammalian artificial chromosome and can be maintained in vivo and in cells of heterologous species in vitro.
Chromosoma | 1982
Gyula Hadlaczky; Tünde Praznovszky; G. Bisztray
Chromosomes from poppy (Papaver somniferum L.) and wheat (Triticum monococcum L.) were obtained from cell suspension cultures using a mass isolation procedure. Protein-depleted isolated chromosomes were produced using different modes of extraction (e.g., sodium chloride, dextran sulphate-heparin) and examined by protein electrophoresis as well as light and electron microscopy. The results are discussed as they relate to the reported structure of protein-depleted animal chromosomes. With respect to the scaffold model of mitotic chromosomes we conclude that i) nonhistone proteins seem to play a fundamental role in plant chromosome architecture; ii) DNA is a structural component of protein-depleted chromosomes; iii) centromeric regions may be of structural importance for the higher order organization of chromosomes; iv) the existence of a 2M NaCl “resistant” scaffold appears not to be a common feature to both plant and animal chromosomes; v) despite the absence of a typical scaffold in plant chromosomes our results suggest that the higher order organization of plant and animal chromosomes is similar if not the same.
Chromosoma | 1989
Gyula Hadlaczky; Tünde Praznovszky; István Raskó; Judit Keresö
Human anti-centromere sera from scleroderma patients were used to detect centromere antigens of mouse fibroblast cells. An Mr=59000 centromere protein was localized exclusively on mitotic chromosomes. The association of this protein with the mitotic chromosomes proved to be DNase I sensitive. In interphase nuclei, this centromere antigen was not detectable by immunoblot techniques. The results suggest that the Mr=59000 mitosis specific protein may be necessary for the structural stability of kinetochores during mitosis.
Cellular and Molecular Life Sciences | 2008
Róbert Katona; Ildikó Sinkó; Gy. Holló; K. Székely Szűcs; Tünde Praznovszky; J. Kereső; Erika Csonka; Katalin Fodor; Imre Cserpán; B. Szakál; Péter Blazsó; Andor Udvardy; Gyula Hadlaczky
Abstract.Mammalian artificial chromosomes (MACs) are safe, stable, non-integrating genetic vectors with almost unlimited therapeutic transgene-carrying capacity. The combination of MAC and stem cell technologies offers a new strategy for stem cell-based therapy, the efficacy of which was confirmed and validated by using a mouse model of a devastating monogenic disease, galactocerebrosidase deficiency (Krabbe’s disease). Therapeutic MACs were generated by sequence-specific loading of galactocerebrosidase transgenes into a platform MAC, and stable, pluripotent mouse embryonic stem cell lines were established with these chromosomes. The transgenic stem cells were thoroughly characterized and used to produce chimeric mice on the mutant genetic background. The lifespan of these chimeras was increased twofold, verifying the feasibility of the development of MAC-stem cell systems for the delivery of therapeutic genes in stem cells to treat genetic diseases and cancers, and to produce cell types for cell replacement therapies.
PLOS ONE | 2014
Anna Tóth; Katalin Fodor; Tünde Praznovszky; Vilmos Tubak; Andor Udvardy; Gyula Hadlaczky; Róbert Katona
Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe’s disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.
Nucleic Acids Research | 2002
Imre Cserpán; Róbert Katona; Tünde Praznovszky; Edit Novák; Márta Rózsavölgyi; Erika Csonka; Mónika Mórocz; Katalin Fodor; Gyula Hadlaczky
We have investigated the large-scale organization of the human chAB4-related long-range multisequence family, a low copy-number repetitive DNA located in the pericentromeric heterochromatin of several human chromosomes. Analysis of genomic clones revealed large-scale ( approximately 100 kb or more) sequence conservation in the region flanking the prototype chAB4 element. We demonstrated that this low copy-number family is connected to another long-range repeat, the NF1-related (PsiNF1) multisequence. The two DNA types are joined by an approximately 2 kb-long tandem repeat of a 48-bp satellite. Although the chAB4- and NF1-like sequences were known to have essentially the same chromosomal localization, their close association is reported here for the first time. It indicates that they are not two independent long-range DNA families, but are parts of a single element spanning approximately 200 kb or more. This view is consistent both with their similar chromosomal localizations and the high levels of sequence conservation among copies found on different chromosomes. We suggest that the master copy of the linked chAB4-PsiNF1 DNA segment appeared first on the ancestor of human chromosome 17.
Chromosoma | 1995
Katalin A. Holland; Judit Keresö; József Zákány; Tünde Pravnovskzy; Éva Monostori; N. Belyaer; Gyula Hadlaczky
Monoclonal antibodies (Mabs) were raised against isolated Chinese hamster protein-depleted chromosomes Chromosome scaffolds) in order to probe for components involved in the higher-order structure of mammalian chromosomes. One of the Mabs detected a ring-like structure in metaphase at the centromere, which is conserved between Chinese hamster and human cells. Additionally, the Mab stained the centrioles in interphase cells in these two species. The antigen was enriched in chromosomal protein preparations by comparison with nuclear protein samples, and has an apparent Mr=170,000. The centromere antigen remained present in chromosome scaffold preparations, indicating that it was tightly associated with DNA. The antigen was distinct in its centromeric localisation from any of the centromere antigens reported to date. A possible role of the antigen in stabilising the centromere, by holding the sister chromatids together until their separation at the metaphase-anaphase transition is presented.
Acta Biologica Hungarica | 2014
Anna Tóth; Katalin Fodor; Péter Blazsó; Imre Cserpán; Tünde Praznovszky; Vilmos Tubak; Andor Udvardy; Gyula Hadlaczky; Róbert Katona
Direct reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPS) was achieved recently by overexpression of four transcription factors encoded by retroviral vectors. Most of the virus vectors, however, may cause insertional mutagenesis in the host genome and may also induce tumor formation. Therefore, it is very important to discover novel and safer, non-viral reprogramming methods. Here we describe the reprogramming of somatic cells into iPS cells by a novel protein-based technique. Engineered Oct4, Sox2 and Klf4 transcription factors carrying an N-terminal Flag-tag and a C-terminal polyarginine tail were synthesized by a recently described mammalian artificial chromosome expression system (ACEs). This system is suitable for the high-level production of recombinant proteins in mammalian tissue culture cells. Recombinant proteins produced in this system contain all the post-translational modifications essential for the stability and the authentic function of the proteins. The engineered Oct4, Sox2 and Klf4 proteins efficiently induced the reprogramming of mouse embryonic fibroblasts by means of protein transduction. This novel method allows for the generation of iPS cells, which may be suitable for therapeutic applications in the future.
Chromosome Research | 2004
Barnabas Szakal; Imre Cserpán; Erika Csonka; Éva Monostori; Andor Udvardy; Gyula Hadlaczky
The Chinese hamster is one of the few mammalian species that are characterized by relatively poor heterochromatin content. It was intriguing to test whether or not the lack of large blocks of heterochromatin in the hamster chromosomes could be correlated with the absence or species-specific differences of the HP1 proteins, the main structural components of heterochromatin. To address this, we attempted to clone HP1 from the Chinese hamster. It is shown here that all three isoforms of HP1 known in mammals are present in hamster, and the amino acid sequences deduced from the cDNAs of the isoforms are 97–100% identical to those of the known mammalian homologues. All three isoforms are localized mainly in heterochromatic regions in the native chromosomes and nuclei. The hamster HP1α gene was cloned, sequenced and mapped to the short arm of hamster chromosome 2.These data indicate that the Chinese hamster has all the HP1 components necessary for the establishment of heterochromatin. The limited amount of heterochromatin in hamster cells may probably be attributed to the unusual satellite DNA content of the hamster genome.