Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Alexander Ebhardt is active.

Publication


Featured researches published by H. Alexander Ebhardt.


Scientific Data | 2014

A repository of assays to quantify 10,000 human proteins by SWATH-MS

George Rosenberger; Ching Chiek Koh; Tiannan Guo; Hannes L. Röst; Petri Kouvonen; Ben C. Collins; Moritz Heusel; Yansheng Liu; Etienne Caron; Anton Vichalkovski; Marco Faini; Olga T. Schubert; Pouya Faridi; H. Alexander Ebhardt; Mariette Matondo; Henry H N Lam; Samuel L. Bader; David S. Campbell; Eric W. Deutsch; Robert L. Moritz; Stephen Tate; Ruedi Aebersold

Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).


Proteomics | 2015

Applications of targeted proteomics in systems biology and translational medicine.

H. Alexander Ebhardt; Alex Root; Chris Sander; Ruedi Aebersold

Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM‐MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.


Proteomics | 2012

Range of protein detection by selected/multiple reaction monitoring mass spectrometry in an unfractionated human cell culture lysate.

H. Alexander Ebhardt; Eduard Sabidó; Ruth Hüttenhain; Ben C. Collins; Ruedi Aebersold

Selected or multiple reaction monitoring is a targeted mass spectrometry method (S/MRM‐MS), in which many peptides are simultaneously and consistently analyzed during a single liquid chromatography‐mass spectrometry (LC‐S/MRM‐MS) measurement. These capabilities make S/MRM‐MS an attractive method to monitor a consistent set of proteins over various experimental conditions. To increase throughput for S/MRM‐MS it is advantageous to use scheduled methods and unfractionated protein extracts. Here, we established the practically measurable dynamic range of proteins reliably detectable and quantifiable in an unfractionated protein extract from a human cell line using LC‐S/MRM‐MS. Initially, we analyzed S/MRM transition peak groups in terms of interfering signals and compared S/MRM transition peak groups to MS1‐triggered MS2 spectra using dot‐product analysis. Finally, using unfractionated protein extract from human cell lysate, we quantified the upper boundary of copies per cell to be 35 million copies per cell, while 7500 copies per cell represents a lower boundary using a single 35 min linear gradient LC‐S/MRM‐MS measurement on a current, standard commercial instrument.


Methods of Molecular Biology | 2014

Selected Reaction Monitoring Mass Spectrometry: A Methodology Overview

H. Alexander Ebhardt

Moving past the discovery phase of proteomics, the term targeted proteomics combines multiple approaches investigating a certain set of proteins in more detail. One such targeted proteomics approach is the combination of liquid chromatography and selected or multiple reaction monitoring mass spectrometry (SRM, MRM). SRM-MS requires prior knowledge of the fragmentation pattern of peptides, as the presence of the analyte in a sample is determined by measuring the m/z values of predefined precursor and fragment ions. Using scheduled SRM-MS, many analytes can robustly be monitored allowing for high-throughput sample analysis of the same set of proteins over many conditions. In this chapter, fundaments of SRM-MS are explained as well as an optimized SRM pipeline from assay generation to data analyzed.


Journal of Proteome Research | 2014

Quantification of ErbB network proteins in three cell types using complementary approaches identifies cell-general and cell-type-specific signaling proteins.

Christina Kiel; H. Alexander Ebhardt; Julia Burnier; Claire Portugal; Eduard Sabidó; Timo Zimmermann; Ruedi Aebersold; Luis Serrano

Relating protein concentration to cell-type-specific responses is one of the remaining challenges for obtaining a quantitative systems level understanding of mammalian signaling. Here we used mass-spectrometry (MS)- and antibody-based quantitative proteomic approaches to measure protein abundances for 75% of a hand-curated reconstructed ErbB network of 198 proteins, in two established cell types (HEK293 and MCF-7) and in primary keratinocyte cells. Comparison with other quantitative studies allowed building a set of ErbB network proteins expressed in all cells and another which are cell-specific and could impart specific properties to the network. As a proof-of-concept of the importance of protein concentration, we generated a small simplified mathematical model encompassing ligand binding, followed by receptor dimerization, activation, and degradation. The model predicts ErbB phosphorylation in HEK293, MCF-7, and keratinocyte cells simply by incorporating cell-type-specific ErbB1, ErbB2, and caveolin-1 abundances but otherwise contains similar rate constants. Altogether, the data provide a resource for protein abundances and localization to be included in larger mathematical models, enabling the generation of cell-type-specific computational models. MS data have been deposited to the ProteomeXchange via PRIDE (with identifier PXD000623) and PASSEL (with identifier PASS00372).


Nature Communications | 2016

Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster

Hirokazu Okada; H. Alexander Ebhardt; Sibylle Chantal Vonesch; Ruedi Aebersold; Ernst Hafen

The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype–phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.


Journal of Cachexia, Sarcopenia and Muscle | 2017

Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study

H. Alexander Ebhardt; Simone Degen; Valentina Tadini; Alain Schilb; Neil Johns; Carolyn Greig; Kenneth Fearon; Ruedi Aebersold; Carsten Jacobi

Cancer cachexia (cancer‐induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age‐related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early.


Journal of Cachexia, Sarcopenia and Muscle | 2017

Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia

H. Alexander Ebhardt; Simone Degen; Valentina Tadini; Alain Schilb; Neil Johns; Carolyn Greig; Kenneth Fearon; Ruedi Aebersold; Carsten Jacobi

Cancer cachexia (cancer‐induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age‐related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early.


Rapid Communications in Mass Spectrometry | 2014

Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage

H. Alexander Ebhardt; Jie Nan; Steven G. Chaulk; Richard P. Fahlman; Ruedi Aebersold

RATIONALE Tandem mass (MS/MS) spectra generated by collision-induced dissociation (CID) typically lack redundant peptide sequence information in the form of e.g. b- and y-ion series due to frequent use of sequence-specific endopeptidases cleaving C- or N-terminal to Arg or Lys residues. METHODS Here we introduce arginyl-tRNA protein transferase (ATE, EC 2.3.2.8) for proteomics. ATE recognizes acidic amino acids or oxidized Cys at the N-terminus of a substrate peptide and conjugates an arginine from an aminoacylated tRNAArg onto the N-terminus of the substrate peptide. This enzymatic reaction is carried out under physiological conditions and, in combination with Lys-C/Asp-N double digest, results in arginylated peptides with basic amino acids on both termini. RESULTS We demonstrate that in vitro arginylation of peptides using yeast arginyl tRNA protein transferase 1 (yATE1) is a robust enzymatic reaction, specific to only modifying N-terminal acidic amino acids. Precursors originating from arginylated peptides generally have an increased protonation state compared with their non-arginylated forms. Furthermore, the product ion spectra of arginylated peptides show near complete 2× fragment ladders within the same MS/MS spectrum using commonly available electrospray ionization peptide fragmentation modes. Unexpectedly, arginylated peptides generate complete y- and c-ion series using electron transfer dissociation (ETD) despite having an internal proline residue. CONCLUSIONS We introduce a rapid enzymatic method to generate peptides flanked on either terminus by basic amino acids, resulting in a rich, redundant MS/MS fragment pattern.


npj Systems Biology and Applications | 2018

Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer

H. Alexander Ebhardt; Alex Root; Yansheng Liu; Nicholas Paul Gauthier; Chris Sander; Ruedi Aebersold

In the United States alone one in five newly diagnosed cancers in men are prostate carcinomas (PCa). Androgen receptor (AR) status and the PI3K-AKT-mTOR signal transduction pathway are critical in PCa. After initial response to single drugs targeting these pathways resistance often emerges, indicating the need for combination therapy. Here, we address the question of efficacy of drug combinations and development of resistance mechanisms to targeted therapy by a systems pharmacology approach. We combine targeted perturbation with detailed observation of the molecular response by mass spectrometry. We hypothesize that the molecular short-term (24 h) response reveals details of how PCa cells adapt to counter the anti-proliferative drug effect. With focus on six drugs currently used in PCa treatment or targeting the PI3K-AKT-mTOR signal transduction pathway, we perturbed the LNCaP clone FGC cell line by a total of 21 treatment conditions using single and paired drug combinations. The molecular response was analyzed by the mass spectrometric quantification of 52 proteins. Analysis of the data revealed a pattern of strong responders, i.e., proteins that were consistently downregulated or upregulated across many of the perturbation conditions. The downregulated proteins, HN1, PAK1, and SPAG5, are potential early indicators of drug efficacy and point to previously less well-characterized response pathways in PCa cells. Some of the upregulated proteins such as 14-3-3 proteins and KLK2 may be useful early markers of adaptive response and indicate potential resistance pathways targetable as part of combination therapy to overcome drug resistance. The potential of 14-3-3ζ (YWHAZ) as a target is underscored by the independent observation, based on cancer genomics of surgical specimens, that its DNA copy number and transcript levels tend to increase with PCa disease progression. The combination of systematic drug perturbation combined with detailed observation of short-term molecular response using mass spectrometry is a potentially powerful tool to discover response markers and anti-resistance targets.Author summaryMetastatic prostate cancer is often treated with pharmacological agents to prevent the tumor from expanding; however, despite advances in drug development patients often die of the disease. An international research team lead by Ruedi Aebersold (ETH Zürich, Switzerland) and Chris Sander (Dana Faber Cancer Institute, Boston, USA) asked how prostate cancer cells adapt to pharmacological treatment on the molecular protein level and find a general response in their prostate cancer model. Next, they asked if similar changes are found in prostate cancer patients. Indeed, the same proteins upregulated in prostate cancer models are also upregulated in prostate cancer patients. Immediately, this has implications for patient treatment stratification and opens new avenues for drug developments in metastatic prostate cancer.

Collaboration


Dive into the H. Alexander Ebhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Root

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge