Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. An is active.

Publication


Featured researches published by H. An.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2016

An Enhanced Primary Reference Fuel Mechanism Considering Conventional Fuel Chemistry in Engine Simulation

Dezhi Zhou; Wenming Yang; H. An; Jing Li; Markus Kraft

A compact and accurate primary reference fuel (PRF) mechanism which consists of 46 species and 144 reactions was developed and validated to consider the fuel chemistry in combustion simulation based on a homogeneous charged compression ignition (HCCI) mechanism. Some significant reactions were updated to ensure its capabilities for predicting combustion characteristics of PRFs. To better predict the laminar flame speed, the relevant C2–C3 carbon reactions were coupled in. This enhanced PRF mechanism was validated by available experimental data references including ignition delay times, laminar flame speed, premixed flame species concentrations in jet stirred reactor (JSR), rapid compression machine (RCM), and shock tube. The predicted data was calculated by chemkin-ii codes. All the comparisons between experimental and calculated data indicated high accuracy of this mechanism to capture combustion characteristics. Also, this mechanism was integrated into kiva4–chemkin. The engine simulation data (including in-cylinder pressure and apparent heat release rate (HRR)) was compared with experimental data in PRF HCCI, partially premixed compression ignition (PCCI), and diesel/gasoline dual-fuel engine combustion data. The comparison results implied that this mechanism could predict PRF and gasoline/diesel combustion in computational fluid dynamic (CFD) engine simulations. The overall results show this PRF mechanism could predict the conventional fuel combustion characteristics in engine simulation.


Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development | 2015

An Enhanced PRF Mechanism Considering Conventional Fuel Chemistry in Engine Simulation

Dezhi Zhou; Wenming Yang; H. An; Jing Li; Markus Kraft

A compact and accurate primary reference fuel (PRF) mechanism which consists of 46 species and 144 reactions was developed and validated to consider the fuel chemistry in combustion simulation based on a homogenous charged compression ignition (HCCI) mechanism. Some significant reactions were updated to ensure its capabilities for predicting combustion characteristics of PRF fuels. To better predict laminar flame speed, the relevant C2-C3 carbon reactions was coupled in. This enhanced PRF mechanism was validated by available experimental data references including ignition delay times, laminar flame speed, premixed flame species concentrations in jet stirred reactor (JSR), rapid compression machine and shock tube. The predicted data was calculated by CHEMKIN-II codes. All the comparisons between experimental and calculated data indicated high accuracy of this mechanism to capture combustion characteristics. Also, this mechanism was integrated into KIVA4-CHEMKIN. The engine simulation data (including in-cylinder pressure and apparent heat release rate (HRR)) was compared with experimental data in PRF HCCI, partially premixed compression ignition (PCCI) and diesel/gasoline dual-fuel engine combustion data. The comparison results implied that this mechanism could predict PRF and gasoline/diesel combustion in CFD engine simulations. The overall results show this PRF mechanism could predict the conventional fuel combustion characteristics in engine simulation.Copyright


Combustion Theory and Modelling | 2017

Soot and NO emissions control in a natural gas/diesel fuelled RCCI engine by φ-T map analysis

Jing Li; Wenming Yang; H. An; Dezhi Zhou

Soot and NO emissions are considered as major pollutants to the atmosphere from compression ignition engines. Researchers have been dedicated to the reduction of soot and NO emissions. Thus, an advance combustion regime, i.e. reactivity controlled compression ignition (RCCI), was proposed to mitigate the formation of these emissions. In this study, the dynamic ϕ-T (equivalence ratio vs. temperature) map analysis was applied to visualise the combustion processes associated with the in-cylinder temperature and equivalence ratio in an RCCI engine. Therefore, the soot and NO emissions can be efficiently reduced by controlling the combustion process out of the emissions islands on the ϕ-T map. This analysis method employs KIVA4-CHEMKIN and SENKIN code to construct ϕ-T maps under various conditions. To find out the significant parameters of controlling combustion process and emissions formation, four parameters were taken into consideration in a natural gas (NG) and diesel fuelled RCCI engine: NG percentage, the first start of injection (SOI) timing, split fraction of diesel and exhaust gas recirculation (EGR) rate. Each parameter was varied at three levels. Finally, the ϕ-T maps and final soot and NO emissions were compared among varied conditions for each parameter. It is found that the increased NG percentage can significantly reduce soot because of the absence of C-C bond in NG and the reduced diesel fuel impingement on the surface of the piston or cylinder wall. Increasing EGR can decrease the peak combustion temperature due to the dilution effect and thermal effect, consequently maintaining RCCI at low temperature combustion region. This study also indicates that dynamic ϕ-T map analysis is efficient at manipulating the combustion process to mitigate the soot and NO emissions formation.


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2016

Application of Dynamic ϕ–T Map: Analysis on a Natural Gas/Diesel Fueled RCCI Engine

Jing Li; Wenming Yang; H. An; Dezhi Zhou; Markus Kraft

In this study, dynamic ϕ-T map analysis was applied to an RCCI (reactivity controlled compression ignition) engine fueled with NG (natural gas) and diesel. The combustion process of the engine was simulated by coupled KIVA4-CHEMKIN with a DOS (diesel oil surrogate) chemical mechanism. The ϕ-T maps were constructed by the mole fractions of soot and NO obtained from SENKIN and ϕ-T conditions from engine simulations. Five parameters, namely NG fraction, 1st SOI (start of injection) timing, 2nd SOI timing, 2nd injection duration and EGR (exhaust gas recirculation) rate were varied in certain ranges individually, and the ϕ-T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ-T conditions and influence the soot-NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within LTC (low temperature combustion) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C-C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ-T map diagram.Copyright


Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development | 2015

Impact of Urea Direct Injection on NOx Emission Formation of Diesel Engines Fueled by Biodiesel

Wenming Yang; H. An; Jing Li; Dezhi Zhou; Markus Kraft

There are many NOx removal technologies: exhaust gas recirculation (EGR), selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR), miller cycle, emulsion technology and engine performance optimization. In this work, a numerical simulation investigation was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NOx emissions of a biodiesel fueled diesel engine. Simulation was performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. To improve the overall prediction accuracy, the Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray break up model was implemented in the KIVA code to replace the original Taylor Analogy Breakup (TAB) model for the primary and secondary fuel breakup processes modeling. The KIVA4 code was further modified to accommodate multiple injections, different fuel types and different injection orientations. A skeletal reaction mechanism for biodiesel + urea was developed which consists of 95 species and 498 elementary reactions. The chemical behaviors of the NOx formation and Urea/NOx interaction processes were modeled by a modified extended Zeldovich mechanism and Urea/NOx interaction sub-mechanism. Developed mechanism was first validated against the experimental results conducted on a light duty 2KD FTV Toyota car engine fueled by pure biodiesel in terms of in-cylinder pressure, heat release rate. To ensure an efficient NOx reduction process, various aqueous urea injection strategies in terms of post injection timing and injection rate were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NOx removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NOx emission levels.Copyright


ASME 2015 Internal Combustion Engine Division Fall Technical Conference | 2015

Application of Dynamic Φ-T Map: Analysis on a Natural Gas/Diesel Fueled RCCI Engine

Jing Li; Wenming Yang; H. An; Dezhi Zhou; Markus Kraft

In this study, dynamic ϕ-T map analysis was applied to an RCCI (reactivity controlled compression ignition) engine fueled with NG (natural gas) and diesel. The combustion process of the engine was simulated by coupled KIVA4-CHEMKIN with a DOS (diesel oil surrogate) chemical mechanism. The ϕ-T maps were constructed by the mole fractions of soot and NO obtained from SENKIN and ϕ-T conditions from engine simulations. Five parameters, namely NG fraction, 1st SOI (start of injection) timing, 2nd SOI timing, 2nd injection duration and EGR (exhaust gas recirculation) rate were varied in certain ranges individually, and the ϕ-T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ-T conditions and influence the soot-NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within LTC (low temperature combustion) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C-C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ-T map diagram.Copyright


International Journal of Modern Physics: Conference Series | 2014

3-DIMENSIONAL NUMERICAL MODELING ON THE COMBUSTION AND EMISSION CHARACTERISTICS OF BIODIESEL IN DIESEL ENGINES

Wenming Yang; H. An; Maghbouli Amin; Jing Li

A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.


international conference on fuel cell science engineering and technology fuelcell collocated with asme international conference on energy sustainability | 2013

Experimental Study on the Combustion Process and Performance of Diesel Engines Fueled by Emulsion Diesel With Novel Organic Additives

Wenming Yang; H. An; Jing Li; Amin Maghbouli; K.J. Chua

Transportation is one of the major contributors to the world’s energy consumption and greenhouse gases emissions. The need for increased efficiency has placed diesel engine in the spotlight due to its superior thermal efficiency and fuel economy over gasoline engine. However, diesel engines also face the major disadvantage of increased NOx emissions. To address this issue, three types of emulsion fuels with different water concentrations (5%, 10% and 15% mass water) are produced and tested. Novel organic materials (glycerin and ployethoxy-ester) are added in the fuel to provide extra oxygen for improving combustion. NP-15 is added as surfactant which can help to reduce the oil and water surface tension, activates their surface, and maximizes their superficial contact areas, thereby forming a continuous and finely dispersed droplets phase. The stability of the emulsion fuels is tested under various environmental temperature for one year, and no significant separation is observed. It is better than normal emulsion fuel which can only maintain the state for up to three months. The combustion process and performance of the emulsion fuels are tested in a four-stroke, four cylinder diesel engine. The results indicate that the water droplets enclosed in the emulsion fuel explode at high temperature environment and help to break up the big oil droplets into smaller ones, thereby significantly increase the surface area of the oil droplets and enhance the heat transfer from hot gas to the fuel. As a result, the fuel evaporation is improved and the combustion process is accelerated, leading to an improved brake thermal efficiency (up to 14.2%). Meanwhile, the presence of the water causes the peak temperature of the flame to drop, thereby significantly bringing down the NOx emissions by more than 30%.Copyright


Applied Energy | 2012

Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

H. An; Wenming Yang; S.K. Chou; K.J. Chua


Applied Energy | 2013

Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils

H. An; Wenming Yang; Amin Maghbouli; Jingliang Li; S.K. Chou; K.J. Chua

Collaboration


Dive into the H. An's collaboration.

Top Co-Authors

Avatar

Wenming Yang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amin Maghbouli

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

K.J. Chua

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jing Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

S.K. Chou

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Dezhi Zhou

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Markus Kraft

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Sina Shafee

Middle East Technical University

View shared research outputs
Top Co-Authors

Avatar

Dongyue Jiang

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge