Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.B. Sun is active.

Publication


Featured researches published by H.B. Sun.


Annals of the New York Academy of Sciences | 2011

Mechanotransduction and cartilage integrity

D.J. Leong; John A. Hardin; Neil Cobelli; H.B. Sun

Osteoarthritis (OA) is characterized by the breakdown of articular cartilage that is mediated in part by increased production of matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS), enzymes that degrade components of the cartilage extracellular matrix. Efforts to design synthetic inhibitors of MMPs/ADAMTS have only led to limited clinical success. In addition to pharmacologic therapies, physiologic joint loading is widely recommended as a nonpharmacologic approach to improve joint function in osteoarthritis. Clinical trials report that moderate levels of exercise exert beneficial effects, such as improvements in pain and physical function. Experimental studies demonstrate that mechanical loading mitigates joint destruction through the downregulation of MMPs/ADAMTS. However, the molecular mechanisms underlying these effects of physiologic loading on arthritic joints are not well understood. We review here the recent progress on mechanotransduction in articular joints, highlighting the mediators and pathways in the maintenance of cartilage integrity, especially in the prevention of cartilage degradation in OA.


Bone | 2014

Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo.

Oran D. Kennedy; Damien M. Laudier; H.B. Sun; Mitchell B. Schaffler

Osteocyte apoptosis is spatially, temporally and functionally linked to the removal and replacement of microdamage in the bone. Recently we showed that microdamage elicits distinct responses in two populations of osteocytes near the injury site. Osteocytes directly adjacent to microdamage undergo apoptosis, whereas there is a second group of osteocytes located adjacent to the apoptotic population that upregulate expression of osteoclastogenic signaling molecules. In this study we used the pan-caspase inhibitor QVD to test the hypothesis that osteocyte apoptosis is an obligatory step in the production of key osteoclastogenic signals by in situ osteocytes in fatigue-damaged bone. We found, based on real-time PCR and immunohistochemistry assays, that expression of the apoptosis marker caspase-3 as well osteoclastogenic proteins RANKL and VEGF were increased following fatigue, while expression of the RANKL antagonist OPG decreased. However, when apoptosis was inhibited using QVD, these changes in gene expression were completely blocked. This dependence on apoptosis for neighboring non-apoptotic cells to produce signals that promote tissue remodeling also occurs in response to focal ischemic injury in the brain and heart, indicating that osteoclastic bone remodeling follows a common paradigm for localized tissue repair.


International Journal of Molecular Sciences | 2013

Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

Daniel J. Leong; Marwa Choudhury; David M. Hirsh; John A. Hardin; Neil Cobelli; H.B. Sun

Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.


Arthritis Research & Therapy | 2014

Green tea polyphenol treatment is chondroprotective, anti-inflammatory and palliative in a mouse posttraumatic osteoarthritis model

D.J. Leong; Marwa Choudhury; Regina Hanstein; David M. Hirsh; Sun J in Kim; Mitchell B. Schaffler; John A. Hardin; David C. Spray; Mary B. Goldring; Neil Cobelli; H.B. Sun

IntroductionEpigallocatechin 3-gallate (EGCG), a polyphenol present in green tea, was shown to exert chondroprotective effects in vitro. In this study, we used a posttraumatic osteoarthritis (OA) mouse model to test whether EGCG could slow the progression of OA and relieve OA-associated pain.MethodsC57BL/6 mice were subjected to surgical destabilization of the medial meniscus (DMM) or sham surgery. EGCG (25xa0mg/kg) or vehicle control was administered daily for 4 or 8xa0weeks by intraperitoneal injection starting on the day of surgery. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical analysis to detect cleaved aggrecan and type II collagen and expression of proteolytic enzymes matrix metalloproteinase 13 (MMP-13) and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Real-time PCR was performed to characterize the expression of genes critical for articular cartilage homeostasis. During the course of the experiments, tactile sensitivity testing (von Frey test) and open-field assays were used to evaluate pain behaviors associated with OA, and expression of pain expression markers and inflammatory cytokines in the dorsal root ganglion (DRG) was determined by real-time PCR.ResultsFour and eight weeks after DMM surgery, the cartilage in EGCG-treated mice exhibited less Safranin O loss and cartilage erosion, as well as lower OARSI scores compared to vehicle-treated controls, which was associated with reduced staining for aggrecan and type II collagen cleavage epitopes, and reduced staining for MMP-13 and ADAMTS5 in the articular cartilage. Articular cartilage in the EGCG-treated mice also exhibited reduced levels of Mmp1, Mmp3, Mmp8, Mmp13,Adamts5, interleukin 1 beta (Il1b) and tumor necrosis factor alpha (Tnfa) mRNA and elevated gene expression of the MMP regulator Cbp/p300 interacting transactivator 2 (Cited2). Compared to vehicle controls, mice treated with EGCG exhibited reduced OA-associated pain, as indicated by higher locomotor behavior (that is, distance traveled). Moreover, expression of the chemokine receptor Ccr2 and proinflammatory cytokines Il1b and Tnfa in the DRG were significantly reduced to levels similar to those of sham-operated animals.ConclusionsThis study provides the first evidence in an OA animal model that EGCG significantly slows OA disease progression and exerts a palliative effect.


Arthritis Research & Therapy | 2016

Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model

Zhuo Zhang; D.J. Leong; L. Xu; Z. He; Angela Wang; Mahantesh S. Navati; Sun J. Kim; David M. Hirsh; John A. Hardin; Neil Cobelli; Joel M. Friedman; H.B. Sun

BackgroundCurcumin has been shown to have chondroprotective potential in vitro. However, its effect on disease and symptom modification in osteoarthritis (OA) is largely unknown. This study aimed to determine whether curcumin could slow progression of OA and relieve OA-related pain in a mouse model of destabilization of the medial meniscus (DMM).MethodsExpression of selected cartilage degradative-associated genes was evaluated in human primary chondrocytes treated with curcumin and curcumin nanoparticles and assayed by real-time PCR. The mice subjected to DMM surgery were orally administered curcumin or topically administered curcumin nanoparticles for 8xa0weeks. Cartilage integrity was evaluated by Safranin O staining and Osteoarthritis Research Society International (OARSI) score, and by immunohistochemical staining of cleaved aggrecan and type II collagen, and levels of matrix metalloproteinase (MMP)-13 and ADAMTS5. Synovitis and subchondral bone thickness were scored based on histologic images. OA-associated pain and symptoms were evaluated by von Frey assay, and locomotor behavior including distance traveled and rearing.ResultsBoth curcumin and nanoparticles encapsulating curcumin suppressed mRNA expression of pro-inflammatory mediators IL-1β and TNF-α, MMPs 1, 3, and 13, and aggrecanase ADAMTS5, and upregulated the chondroprotective transcriptional regulator CITED2, in primary cultured chondrocytes in the absence or presence of IL-1β. Oral administration of curcumin significantly reduced OA disease progression, but showed no significant effect on OA pain relief. Curcumin was detected in the infrapatellar fat pad (IPFP) following topical administration of curcumin nanoparticles on the skin of the injured mouse knee. Compared to vehicle-treated controls, topical treatment led to: (1) reduced proteoglycan loss and cartilage erosion and lower OARSI scores, (2) reduced synovitis and subchondral plate thickness, (3) reduced immunochemical staining of type II collagen and aggrecan cleavage epitopes and numbers of chondrocytes positive for MMP-13 and ADAMTS5 in the articular cartilage, and (4) reduced expression of adipokines and pro-inflammatory mediators in the IPFP. In contrast to oral curcumin, topical application of curcumin nanoparticles relieved OA-related pain as indicated by reduced tactile hypersensitivity and improved locomotor behavior.ConclusionThis study provides the first evidence that curcumin significantly slows OA disease progression and exerts a palliative effect in an OA mouse model.


Osteoarthritis and Cartilage | 2012

High Resolution Micro Arthrography of Hard and Soft Tissues in a Murine Model

Xiang I. Gu; Paolo Palacio-Mancheno; Daniel J. Leong; Y.A. Borisov; E. Williams; Natalia Maldonado; Damien M. Laudier; Mitchell B. Schaffler; H.B. Sun; Luis Cardoso

OBJECTIVEnRecent developments on high resolution micro computed tomography (μCT) allow imaging of soft tissues in small animal joints. Nevertheless, μCT images cannot distinguish soft tissues from synovial fluid due to their similar mass density, limiting the 3D assessment of soft tissues volume and thickness. This study aimed to evaluate a lead chromate contrast agent for μCΤ arthrography of rat knee joints ex vivo.nnnDESIGNnIntact tibiofemoral rat joints were injected with the contrast agent at different concentrations and imaged using a μCT at 2.7 μm isotropic voxel size. Cartilage thickness was measured using an automated procedure, validated against histological measurements, and analyzed as a function of μCT image resolution. Changes in hard and soft tissues were also analyzed in tibiofemoral joints 4 weeks after surgical destabilization of the medial meniscus (DMM).nnnRESULTSnThe contrast agent diffused well throughout the whole knee cavity without penetrating the tissues, therefore providing high contrast at the boundaries between soft tissues and synovial fluid space. Thickness analysis of cartilage demonstrated a high similarity between histology and μ-arthrography approaches (R(2) = 0.90). Four weeks after surgical DMM, the development of osteophytes (Oph) and cartilage ulcerations was recognizable with μCT, as well as a slight increase in trabecular bone porosity, and decrease in trabecular thickness.nnnCONCLUSIONSnA lead chromate-based contrast agent allowed discriminating the synovial fluid from soft tissues of intact knee joints, and thus made possible both qualitative and quantitative assessment of hard and soft tissues in both intact and DMM tibiofemoral joints using high resolution μCT.


Osteoarthritis and Cartilage | 2016

Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes.

Z. He; D.J. Leong; Z. Zhuo; Luis Cardoso; David C. Spray; Mary B. Goldring; Neil Cobelli; H.B. Sun

OBJECTIVEnTo determine the strain-induced signaling pathways involved in regulating the transactivation of the transcription regulator Cbp/p300 Interacting Transactivator with ED-rich tail 2 (CITED2) and downstream targets in chondrocytes.nnnMETHODSnPrimary human chondrocytes or C28/I2 chondrocytic cells were subjected to various strain regimes. C57BL/6 mice were subjected to treadmill running. Loss-of-function was carried out using siRNA or inhibitors specific for targeted molecules. mRNA levels were assayed by RT-qPCR, and proteins by western blotting, immunofluorescence, and/or immunohistochemical staining. CITED2 promoter activity was assayed in chondrocytes using wild-type or mutant constructs.nnnRESULTSnCyclic strain at 5%, 1 Hz induced CITED2 expression and suppressed expression of matrix metalloproteinase (MMP)-1 and -13 at the messenger RNA (mRNA) and protein levels in human chondrocytes. Abolishing primary cilia through knockdown of intraflagellar transport protein (IFT88) attenuated CITED2 gene expression and decreased protein levels. Similar effects were observed with inhibitors of extracellular adenosine triphosphate (ATP) or P2 purinergic receptors, or antagonists of Ca(2+) signaling. Knockdown of IFT88 in articular chondrocytes in vivo diminished treadmill induced-CITED2 expression and upregulated MMPs. Knockdown of hypoxia-inducible factor (HIF)1α, specificity protein 1 (Sp1), or deletion of the shear stress response element (SSRE) in the CITED2 promoter limited cyclic strain-induced transactivation of CITED2. However, the strain induced-transactivation of CITED2 was abolished only on knockdown of HIF1α, Sp1, and SSRE or by loss-of-function of IFT88 or extracellular-signal-regulated kinases (ERK)1/2.nnnCONCLUSIONSnCITED2 transactivation is a critical event in signaling generated by strain and transduced by primary cilia, extracellular ATP, P2 purinergic receptors, and Ca(2+) signaling. Strain-induced CITED2 transactivation requires HIF1α, Sp1, and an intact SSRE and leads to the downregulation of MMPs such as MMP-1 and MMP-13.


Annals of the New York Academy of Sciences | 2016

Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges

D.J. Leong; H.B. Sun

Tendon injuries are common and present a clinical challenge because they often respond poorly to treatment and require prolonged rehabilitation. Current treatments often do not completely repair or regenerate the injured or diseased tendon to its native composition, structure, and mechanical properties. Stem cell–based therapies have brought new hope for tissue repair and regeneration, including that for tendon rupture and tendinopathy. Despite tremendous effort and progress, the success of stem cell–based studies on tendon repair and regeneration has mainly been limited to preclinical studies with few clinical applications. In this concise review, we discuss basic understanding and translational challenges of using mesenchymal stem cells (MSCs) for tendon repair and regeneration, with a focus on (1) tendon stem/progenitor cells (TSPCs) and therapeutic approaches using TSPCs and other MSCs, (2) regulation of fate determination in MSCs for tendon‐lineage differentiation, (3) pretreatment and condition of stem/progenitor cells for transplantation, and (4) a treatment approach that involves stimulating endogenous stem cells to enhance tendon healing. The review concludes with discussion on future directions.


Annals of the New York Academy of Sciences | 2017

Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration

Neil Cobelli; D.J. Leong; H.B. Sun

Exosomes are nanovesicles secreted from cells that play key roles in intercellular communication. They carry unique content derived from parental cells and are capable of transferring this cargo between cells. The role and function of exosomes largely depends on the origin and functional status of the parental cells. Emerging evidence indicates that exosomes are associated with biological processes and pathogenesis of certain diseases. These nanovesicles offer great potential as biomarkers, enabling the monitoring and diagnosis of various diseases in a noninvasive manner. Furthermore, as an efficient vehicle of biomolecular intercellular transfer, exosomes are under intensive investigation for their potential for drug delivery and carriers for gene therapy. Here, we first summarize the basic biology and function of exosomes, followed by a discussion of their clinical potential, including the use of exosomes for disease diagnosis, treatment, and drug delivery. The review will highlight the potential of exosomes derived from stem cells in regenerative medicine, with a focus on musculoskeletal tissues. We conclude by sharing our views on the challenges, opportunities, and future directions for the use of exosomes as a therapeutic treatment for the repair and regeneration of musculoskeletal tissues.


International Journal of Molecular Sciences | 2016

Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

Angela Wang; Daniel J. Leong; Z. He; Lin Xu; Lidi Liu; Sun Jin Kim; David M. Hirsh; John A. Hardin; Neil Cobelli; H.B. Sun

Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

Collaboration


Dive into the H.B. Sun's collaboration.

Top Co-Authors

Avatar

D.J. Leong

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Neil Cobelli

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John A. Hardin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Z. He

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David M. Hirsh

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Spray

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Luis Cardoso

City College of New York

View shared research outputs
Top Co-Authors

Avatar

L. Xu

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge