H. Bjørn Nielsen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Bjørn Nielsen.
Nature | 2010
Junjie Qin; Ruiqiang Li; Jeroen Raes; Manimozhiyan Arumugam; Kristoffer Sølvsten Burgdorf; Chaysavanh Manichanh; Trine Nielsen; Nicolas Pons; Florence Levenez; Takuji Yamada; Daniel R. Mende; Junhua Li; Junming Xu; Shaochuan Li; Dongfang Li; Jianjun Cao; Bo Wang; Huiqing Liang; Huisong Zheng; Yinlong Xie; Julien Tap; Patricia Lepage; Marcelo Bertalan; Jean-Michel Batto; Torben Hansen; Denis Le Paslier; Allan Linneberg; H. Bjørn Nielsen; Eric Pelletier; Pierre Renault
To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, ∼150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
Nature | 2011
Manimozhiyan Arumugam; Jeroen Raes; Eric Pelletier; Denis Le Paslier; Takuji Yamada; Daniel R. Mende; Gabriel da Rocha Fernandes; Julien Tap; Thomas Brüls; Jean-Michel Batto; Marcelo Bertalan; Natalia Borruel; Francesc Casellas; Leyden Fernandez; Laurent Gautier; Torben Hansen; Masahira Hattori; Tetsuya Hayashi; Michiel Kleerebezem; Ken Kurokawa; Marion Leclerc; Florence Levenez; Chaysavanh Manichanh; H. Bjørn Nielsen; Trine Nielsen; Nicolas Pons; Julie Poulain; Junjie Qin; Thomas Sicheritz-Pontén; Sebastian Tims
Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host–microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
Nature | 2015
Kristoffer Forslund; Falk Hildebrand; Trine Nielsen; Gwen Falony; Shinichi Sunagawa; Edi Prifti; Sara Vieira-Silva; Valborg Gudmundsdottir; Helle Krogh Pedersen; Manimozhiyan Arumugam; Karsten Kristiansen; Anita Yvonne Voigt; Henrik Vestergaard; Rajna Hercog; Paul Igor Costea; Jens Roat Kultima; Junhua Li; Torben Jørgensen; Florence Levenez; Joël Doré; H. Bjørn Nielsen; Søren Brunak; Jeroen Raes; Torben Hansen; Jun Wang; S. Dusko Ehrlich; Peer Bork; Oluf Pedersen
Citing this paper Please note that where the full-text provided on Kings Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publishers definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publishers website for any subsequent corrections.In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.
Nature Biotechnology | 2014
H. Bjørn Nielsen; Mathieu Almeida; Agnieszka Sierakowska Juncker; Simon Rasmussen; Junhua Li; Shinichi Sunagawa; Damian Rafal Plichta; Laurent Gautier; Anders Gorm Pedersen; Eric Pelletier; Ida Bonde; Trine Nielsen; Chaysavanh Manichanh; Manimozhiyan Arumugam; Jean-Michel Batto; Marcelo B Quintanilha dos Santos; Nikolaj Blom; Natalia Borruel; Kristoffer Sølvsten Burgdorf; Fouad Boumezbeur; Francesc Casellas; Joël Doré; Piotr Dworzynski; Francisco Guarner; Torben Hansen; Falk Hildebrand; Rolf Sommer Kaas; Sean Kennedy; Karsten Kristiansen; Jens Roat Kultima
Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.
PLOS Pathogens | 2010
Kristoffer Palma; Stephan Thorgrimsen; Frederikke Gro Malinovsky; Berthe Katrine Fiil; H. Bjørn Nielsen; Peter Brodersen; Daniel Hofius; Morten Petersen; John Mundy
Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11) “lesion mimic” mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz) mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3). LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.
Nature Biotechnology | 2015
Liang Xiao; Qiang Feng; Suisha Liang; Si Brask Sonne; Zhongkui Xia; Xinmin Qiu; Xiaoping Li; Hua Long; Jianfeng Zhang; Dongya Zhang; Chuan Liu; Zhiwei Fang; Joyce Chou; Jacob Glanville; Qin Hao; Dorota Ewa Kotowska; Camilla Colding; Tine Rask Licht; Donghai Wu; Jun Yu; Joseph Jao Yiu Sung; Qiaoyi Liang; Junhua Li; Huijue Jia; Zhou Lan; Valentina Tremaroli; Piotr Dworzynski; H. Bjørn Nielsen; Fredrik Bäckhed; Joël Doré
We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.
Molecular Ecology | 2009
Line K. Bay; Karin E. Ulstrup; H. Bjørn Nielsen; Hanne Østergaard Jarmer; Nicolas Goffard; Bette L. Willis; David J. Miller; Madeleine J. H. van Oppen
We investigated variation in transcript abundance in the scleractinian coral, Acropora millepora, within and between populations characteristically exposed to different turbidity regimes and hence different levels of light and suspended particulate matter. We examined phenotypic plasticity by comparing levels of gene expression between source populations and following 10 days of acclimatization to a laboratory environment. Analyses of variance revealed that 0.05% of genes were differentially expressed between source populations, 1.32% following translocation into a common laboratory and 0.07% in the interaction (source population‐dependent responses to translocation). Functional analyses identified an over‐representation of differentially expressed genes associated with metabolism and fluorescence categories (primarily downregulated), and environmental information processing (primarily upregulated) following translocation to a lower light and turbidity environment. Such metabolic downregulation may indicate nonoxidative stress, hibernation or caloric restriction associated with the changed environmental conditions. Green fluorescent protein‐related genes were the most differentially expressed and were exclusively downregulated; however, green fluorescent protein levels remained unchanged following translocation. Photophysiological responses of corals from both locations were characterized by a decline when introduced to the common laboratory environment but remained healthy (Fv/Fm > 0.6). Declines in total lipid content following translocation were the greatest for inshore corals, suggesting that turbid water corals have a strong reliance on heterotrophic feeding.
Nature microbiology | 2016
Henrik Munch Roager; Lea Benedicte Skov Hansen; Martin Iain Bahl; Henrik Lauritz Frandsen; Vera Carvalho; Rikke Juul Gøbel; Marlene Danner Dalgaard; Damian Rafal Plichta; Morten Sparholt; Henrik Vestergaard; Torben Hansen; Thomas Sicheritz-Pontén; H. Bjørn Nielsen; Oluf Pedersen; Lotte Lauritzen; Mette Kristensen; Ramneek Gupta; Tine Rask Licht
Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.
Journal of Cell Science | 2004
Henrik Næsted; Agnethe Holm; Tom Jenkins; H. Bjørn Nielsen; Cassandra Harris; Michael H. Beale; Mathias Neumann Andersen; Alexandra Mant; Henrik Vibe Scheller; Bilal Camara; Ole Mattsson; John Mundy
The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.
Marine Genomics | 2009
Line K. Bay; H. Bjørn Nielsen; Hanne Østergaard Jarmer; François Seneca; Madeleine J. H. van Oppen
A microarray study was undertaken to examine the potential for clonal gene expression variation in a branching reef building coral, Acropora millepora. The role of small-scale gradients in light and water flow was examined by comparing gene expression levels between branch elevation (tip and base) and position (centre and edge) of replicate coral colonies (n=3). Analyses of variance revealed that almost 60% of variation in gene expression was present between colonies and 34 genes were considered differentially expressed between colonies (minimum P=6.5×10(-4)). These genes are associated with energy metabolism, protein biosynthesis and cell-cell recognition representing either genotypic variation in gene expression or the effects of specific environmental conditions that affect patterns of energy acquisition, growth and pathogen encounters. Less variation was present between central and peripheral branches (7%) and only a single gene was deemed differentially expressed (P=1.493×10(-3)). The function of this gene, a phosphatidylserine decarboxylase, suggests different growth patterns between branch positions within colonies and is consistent with the usual higher growth rates on the perimeter of corymbose-like branching coral colonies such as A. millepora. Four genes were differentially expressed between the tip and base of branches (P=3.239×10(-4)) and were associated with lysosome lipase activity and fluorescence, suggesting that branch tips may encounter higher pathogen loads or levels of mechanical stress and require greater levels of photo-protection associated with higher water flow and light levels. This study therefore confirms transcriptomic variation in response to small-scale environmental gradients consistent with differential resource allocation in clonal coral colonies.