Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.C. Howe is active.

Publication


Featured researches published by H.C. Howe.


Nuclear Fusion | 1985

Confinement in beam-heated plasmas: the effects of low-Z impurities

E. A. Lazarus; J.D. Bell; C.E. Bush; A. Carnevali; Benjamin A. Carreras; W.H. Casson; J.L. Dunlap; P.H. Edmonds; A.C. England; W.L. Gardner; Gary Hallock; J. Hogan; H.C. Howe; D. P. Hutchinson; R.R. Kindsfather; R. C. Isler; R.A. Langley; C.H. Ma; J. Mathew; P.K. Mioduszewski; M. Murakami; G.H. Neilson; V.K. Paré; D.J. Sigmar; C.E. Thomas; R.M. Wieland; J.B. Wilgen; W.R. Wing; A.J. Wootton; K.E. Yokoyama

Confinement studies on the Impurity Study Experiment (ISX-B) in beam-heated plasmas contaminated with small quantities of low-Z impurities are reported. Experimental results on the correlation of particle and energy confinement are presented. A linear relationship of energy confinement and plasma density is observed. As density is increased further, this effect saturates and energy confinement becomes independent of electron density. The experiments have been extended to higher beam power, resulting in an expansion of the ISX-B operating space. Impurities other than neon (carbon and silicon) have been tried and do not produce an enhancement in confinement. Edge cooling by the introduction of impurities has been demonstrated. The change in confinement has been shown to be correlated with changes in the normalized poloidal field fluctuation level (θ/Bθ) but not with the density fluctuation level (ne/ne). The experimental results are compared with models of drift-wave and resistive ballooning turbulence and an explanation is offered for the difference between the results with recycling and non-recycling impurities.


Nuclear Fusion | 1980

Results of hydrogen pellet injection into ISX-B

S.L. Milora; C.A. Foster; C.E. Thomas; C.E. Bush; J. B. Wilgen; E. A. Lazarus; J.L. Dunlap; P.H. Edmonds; W.A. Houlberg; H.C. Howe; D. P. Hutchinson; T.C. Jernigan; M. Murakami; G.H. Neilson; J.A. Rome; M.J. Saltmarsh

High speed pellet fueling experiments have been performed on the ISX-B device in a new regime characterized by large global density rise in both ohmic and neutral beam heated discharges. Hydrogen pellets of 1 mm in diameter were injected in the plasma midplane at velocities exceeding 1 km/s. In low temperature ohmic discharges, pellets penetrate beyond the magnetic axis, and in such cases a sharp decrease in ablation is observed as the pellet passes the plasma center. Density increases of approx. 300% have been observed without degrading plasma stability or confinement. Energy confinement time increases in agreement with the empirical scaling tau/sub E/ approx. n/sub e/ and central ion temperature increases as a result of improved ion-electron coupling. Laser-Thomson scattering and radiometer measurements indicate that the pellet interaction with the plasma is adiabatic. Penetration to r/a approx. 0.15 is optimal, in which case large amplitude sawtooth oscillations are observed and the density remains elevated. Gross plasma stability is dependent roughly on the amount of pellet penetration and can be correlated with the expected temporal evolution of the current density profile.


Journal of Nuclear Materials | 1984

Confinement improvement in beam heated ISX-B discharges with low-z impurity injection

E. A. Lazarus; J.D. Bell; C.E. Bush; A. Carnevali; J.L. Dunlap; P.H. Edmonds; L.C. Emerson; O.C. Eldridge; W.L. Gardner; H.C. Howe; D. P. Hutchinson; R.R. Kindsfather; R.C. Isler; R.A. Langley; C.H. Ma; P.K. Mioduszewski; M. Murakami; L.E. Murray; G.H. Neilson; V.K. Paré; S.D. Scott; D.J. Sigmar; J.E. Simpkins; K.A. Stewart; C.E. Thomas; R.M. Wieland; J. B. Wilgen; A.L. Wintenberg; W.R. Wing; A.J. Wootton

Abstract Results are reported on improved confinement in the Impurity Study Experiment (ISX-B) neutral beam heated plasmas when a small amount of neon is injected shortly after the start of beam heating. The scaling of energy confinement is modified by the introduction of a dependence on line-averaged density. Calculations show the improvement is primarily caused by a reduction in electron heat conduction.


Journal of Nuclear Materials | 1984

Particle removal with pump limiters in ISX-B

P.K. Mioduszewski; L.C. Emerson; J.E. Simpkins; A.J. Wootton; C.E. Bush; A. Carnevali; J.L. Dunlap; P.H. Edmonds; W.L. Gardner; H.C. Howe; D. P. Hutchinson; R.C. Isler; R.R. Kindsfather; R.A. Langley; E. A. Lazarus; C.H. Ma; M. Murakami; G.H. Neilson; V.K. Paré; S.D. Scott; C.E. Thomas; J.B. Whitley; W.R. Wing; K.E. Yokoyama

Abstract The first pump limiter experiments were performed on ISX-B. Two pump limiter modules were installed in the top and bottom of one toroidal sector of the tokamak. The modules consist of inertia cooled, TiC-coated graphite heads and ZrAl getter pumps each with a pumping speed of 1000–2000 l/s. The objective of the initial experiments was the demonstration of plasma particle control with pump limiters. The first set of experiments were performed in ohmic discharges (OH) in which the effect of the pump limiters on the plasma density was clearly demonstrated. In discharges characterized by Ip = 110 kA, B T = 15 kG , n e = 1−5 × 10 13 cm −3 and t = 0.3 s, the pressure rise in the pump limiters was typically 2 mTorr with the pumps off and 0.7 mTorr after activating the pumps. When the pumps were activated, the line-average plasma density decreased by up to a factor 2 at identical gas flow rates. The second set of measurements were performed in neutral beam heated discharges (NBI) with injected powers between 0.6 MW and 1.0 MW. Due to a cooling problem on one of the ZrAl pumps, the NBI experiments were carried out with one limiter only. The maximum pressure observed in NBI-discharges was 5 mTorr without activating the pumps, i.e., approximately twice as high as in OH-discharges. The exhaust efficiency, which is defined as the removed particle flux divided by the total particle flux in the scrape-off layer, is estimated to be 5%.


Physics of fluids. B, Plasma physics | 1990

Second stability in the ATF torsatron—Experiment and theory

J. H. Harris; E. Anabitarte; G. L. Bell; J. D. Bell; T. S. Bigelow; B. A. Carreras; L. A. Charlton; R.J. Colchin; E. C. Crume; N. Dominguez; J.L. Dunlap; G. R. Dyer; A. C. England; R. F. Gandy; J. C. Glowienka; J.W. Halliwell; G. R. Hanson; C. Hidalgo‐Vera; D. L. Hillis; S. Hiroe; L.D. Horton; H.C. Howe; R.C. Isler; T.C. Jernigan; H. Kaneko; J.‐N. Leboeuf; D. K. Lee; V. E. Lynch; James F. Lyon; M.M. Menon

Access to the magnetohydrodynamic (MHD) second stability regime has been achieved in the Advanced Toroidal Facility (ATF) torsatron [Fusion Technol. 10, 179 (1986)]. Operation with a field error that reduced the plasma radius and edge rotational transform resulted in peaked pressure profiles and increased Shafranov shift that lowered the theoretical transition to ideal MHD second stability to β0≊1.3%; the experimental β values (β0≤3%) are well above this transition. The measured magnetic fluctuations decrease with increasing β, and the pressure profile broadens, consistent with the theoretical expectations for self‐stabilization of resistive interchange modes. Initial results from experiments with the field error removed show that the pressure profile is now broader. These later discharges are characterized by a transition to improved (×2–3) confinement and a marked change in the edge density fluctuation spectrum, but the causal relationship of these changes is not yet clear.


Physics of fluids. B, Plasma physics | 1991

Recent results from the ATF torsatron

M. Murakami; S.C. Aceto; E. Anabitarte; D. T. Anderson; F. S. B. Anderson; D. B. Batchelor; B. Brañas; L. R. Baylor; G. L. Bell; J. D. Bell; T. S. Bigelow; B. A. Carreras; R.J. Colchin; N. A. Crocker; E. C. Crume; N. Dominguez; R. A. Dory; J.L. Dunlap; G. R. Dyer; A. C. England; R. H. Fowler; R. F. Gandy; J. C. Glowienka; R. C. Goldfinger; R. H. Goulding; G. R. Hanson; J. H. Harris; C. Hidalgo; D. L. Hillis; S. Hiroe

Recent experiments in the Advanced Toroidal Facility (ATF) torsatron [Plasma Physics and Controlled Nuclear Fusion Research 1990 (IAEA, Vienna, in press)] have emphasized the role of magnetic configuration control in transport studies. Long‐pulse plasma operation up to 20 sec has been achieved with electron cyclotron heating (ECH). With neutral beam injection (NBI) power of ≥1 MW, global energy confinement times of 30 msec have been obtained with line‐average densities up to 1.3×1020 m−3. The energy confinement and the operational space in ATF are roughly the same as those in tokamaks of similar size and field. The empirical scaling observed is similar to gyro‐reduced Bohm scaling with favorable dependences on density and field offsetting an unfavorable power dependence. The toroidal current measured during ECH is identified as the bootstrap current. The observed currents agree well with predictions of neoclassical theory in magnitude and in parametric dependence. Variations of the magnetic configuration ...


Nuclear Fusion | 1985

Measurements of periodic ripple transport in the ISX-B tokamak

S.D. Scott; James F. Lyon; J.K. Munro; D.J. Sigmar; S.C. Bates; J.D. Bell; C.E. Bush; A. Carnevali; J.L. Dunlap; P.H. Edmonds; W.L. Gardner; H.C. Howe; D. P. Hutchinson; R.C. Isler; R.R. Kindsfather; E. A. Lazarus; C.H. Ma; M. Murakami; L.E. Murray; G.H. Neilson; V.K. Paré; P.A. Staats; C.E. Thomas; R.M. Wieland; W.R. Wing; A.J. Wootton

The effect of periodic toroidal field (TF) ripple on ion confinement has been studied in the ISX-B tokamak by comparing neutral-beam-heated plasma performance with 9 and 18 TF coils. Three ripple physics issues were treated by these experiments: (1) enhanced ion thermal conductivity, (2) enhanced loss of energetic ions, and (3) ripple damping of beam-induced toroidal plasma rotation, which may affect the plasma losses. Under a wide variety of plasma conditions, ripple reduced the central-ion temperature by a factor of approximately two (600 eV → 300 eV). Ion temperature was found to be nearly independent of applied neutral-beam power in the large ripple configuration (9 TF coils). These results are shown to be in reasonable agreement with theoretical models of ripple transport. Charge-exchange measurements of the fast-neutral flux indicated no loss of fast passing ions due to ripple, but a large depletion of the fast ions trapped in local ripple wells, as expected theoretically. The central toroidal rotation velocity was reduced by a factor of six by ripple, yielding a momentum confinement time substantially less (factor of about seven) than that expected from standard theoretical expressions for ripple-enhanced ion viscosity.


Physics of fluids. B, Plasma physics | 1993

Fluctuation and modulation transport studies in the Advanced Toroidal Facility (ATF) torsatron

J. B. Wilgen; M. Murakami; J. H. Harris; T. S. Bigelow; R. A. Dory; B. A. Carreras; S.C. Aceto; D. B. Batchelor; L. R. Baylor; G. L. Bell; J. D. Bell; R.J. Colchin; E. C. Crume; N. Dominguez; J.L. Dunlap; G. R. Dyer; A. C. England; R. F. Gandy; J. C. Glowienka; R. C. Goldfinger; R. H. Goulding; G. R. Hanson; C. Hidalgo; S. Hiroe; S.P. Hirshman; L.D. Horton; H.C. Howe; D. P. Hutchinson; R.C. Isler; T.C. Jernigan

The Advanced Toroidal Facility (ATF) torsatron [Fusion Technol. 10, 179 (1986)] has completed experiments focusing on microwave scattering measurements of density fluctuations and transport studies utilizing the modulation of dimensionless parameters. Microwave scattering measurements of electron density fluctuations in the core of low‐collisionality electron cyclotron heated (ECH) plasmas show features that might be evidence of trapped electron instabilities. Starting from gyro‐Bohm scaling, the additional dependence of confinement on the dimensionless parameters ν* and β (collisionality and beta) has been investigated by modulating each of these parameters separately, revealing the additional favorable dependence, τE∝τgBν*−0.18β+0.3.


Nuclear Fusion | 1984

Measurement of χe in ISX-B beam-heated discharges by heat pulse propagation

J.D. Bell; J.L. Dunlap; V.K. Paré; J.D. Callen; H.C. Howe; E. A. Lazarus; M. Murakami; C.E. Thomas

New measurements of the electron thermal diffusivity coefficient ?e for beam-heated (0?1.6 MW) discharges in the Impurity Study Experiment (ISX-B) tokamak confirm the numerical values and trends, with beam power inferred earlier from power balance considerations, and thus support the conclusion that the confinement deterioration with increasing beam power is due to enhanced electron heat conduction losses.


Nuclear Fusion | 1989

Spectroscopic studies of plasma collapse in the Advanced Toroidal Facility

R.C. Isler; E. C. Crume; L.D. Horton; H.C. Howe; G.S. Voronov

Wall conditioning and chromium gettering have reduced Zeff in the Advanced Toroidal Facility (ATF) to the range of 1.5−2.2. As a result, it is possible to achieve essentially steady state conditions using electron cyclotron heating alone, without the uncontrolled growth of the electron and impurity densities observed in the very earliest discharges, which always collapsed to low temperature afterglows. Plasma collapses are, however, still observed during neutral beam injection. It is known that large islands have been present in ATF during its initial periods of operation, but it cannot be determined whether they influence any aspect of the collapse. The impurity behaviour and the radiation losses in this perturbed magnetic configuration are discussed.

Collaboration


Dive into the H.C. Howe's collaboration.

Top Co-Authors

Avatar

M. Murakami

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.L. Dunlap

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.C. Isler

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. P. Hutchinson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G.H. Neilson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.E. Bush

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. A. Lazarus

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P.H. Edmonds

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

V.K. Paré

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.E. Thomas

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge