Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.C.P. Matthijs is active.

Publication


Featured researches published by H.C.P. Matthijs.


Biotechnology and Bioengineering | 1996

Application of light‐emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa)

H.C.P. Matthijs; Hans Balke; Udo M. van Hes; Bernd M. A. Kroon; Luuc R. Mur; Roger A. Binot

Light‐emitting diodes (LEDs) were used as the sole light source in continuous culture of the green alga Chlorella pyrenoidosa. The LEDs applied show a peak emission at 659 nm with a half‐power bandwidth of 30 nm. Selection of this wavelength range, which is optimal for excitation of chlorophylls a and b in their “red” absorption bands makes all photons emitted potentially suitable for photosynthesis. No need for additional supply of blue light was found. A standardized panel with 2 LEDs cm−2 fully covered one side of the culture vessel. At standard voltage in continuous operation the light output of the diode panel appeared more than sufficient to reach maximal growth. Flash operation (5‐μs pulse duration) enables potential use of higher operating voltages which may render up to three times more light output. Flat airlift fermentor‐type continuous culture devices were used to estimate steady state growth rates of Chlorella pyrenoidosa as a function of the light flux (μmol photons · m−2 · s−1) and the flashing frequency of the light‐emitting diodes (which determines the duration of the dark “off” time between the 5‐μs “on” pulses). At the fixed voltage and turbidostat setting applied a 20‐kHz frequency, which equals dark periods of 45 μs, still permitted the maximum growth rate to become nearly reached. Lower frequencies fell short of sustaining the maximal growth rate. However, the light flux decrease resulting from lowering of the flash frequency appeared to reduce the observed growth rates less than in the case of a similar flux decrease with light originating from LEDs in continuous operation. Flash application also showed reduction of the quantum requirement for oxygen evolution at defined frequencies. The frequency domain of interest was between 2 and 14 kHz. LEDs may open interesting new perspectives for studies on optimization of mixing in mass algal culture via the possibility of separation of interests in the role of modulation on light energy conversion and saturation of nutrient supply. Use of flashing LEDs in indoor algal culture yielded a major gain in energy economy in comparison to luminescent light sources.


BMC Genomics | 2008

Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

Lionel Frangeul; Philippe Quillardet; Anne Marie Castets; Jean-François Humbert; H.C.P. Matthijs; Diego Cortez; Andrew C. Tolonen; Cheng-Cai Zhang; Simonetta Gribaldo; Jan-Christoph Kehr; Yvonne Zilliges; Nadine Ziemert; Sven Becker; Emmanuel Talla; Amel Latifi; Alain Billault; Anthony Lepelletier; Elke Dittmann; Christiane Bouchier; Nicole Tandeau de Marsac

BackgroundThe colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria.ResultsDeciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes.ConclusionMicrocystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.


The ISME Journal | 2007

Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule.

Maayke Stomp; Jef Huisman; Lucas J. Stal; H.C.P. Matthijs

The photosynthetic pigments of phototrophic microorganisms cover different regions of the solar light spectrum. Utilization of the light spectrum can be interpreted in terms of classical niche theory, as the light spectrum offers opportunities for niche differentiation and allows coexistence of species absorbing different colors of light. However, which spectral niches are available for phototrophic microorganisms? Here, we show that the answer is hidden in the vibrations of the water molecule. Water molecules absorb light at specific wavebands that match the energy required for their stretching and bending vibrations. Although light absorption at these specific wavelengths appears only as subtle shoulders in the absorption spectrum of pure water, these subtle shoulders create large gaps in the underwater light spectrum due to the exponential nature of light attenuation. Model calculations show that the wavebands between these gaps define a series of distinct niches in the underwater light spectrum. Strikingly, these distinct spectral niches match the light absorption spectra of the major photosynthetic pigments on our planet. This suggests that vibrations of the water molecule have played a major role in the ecology and evolution of phototrophic microorganisms.


Water Research | 2012

Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide

H.C.P. Matthijs; Petra M. Visser; Bart Reeze; Jeroen Meeuse; Pieter Slot; Geert Wijn; Renee Talens; Jef Huisman

Although harmful cyanobacteria form a major threat to water quality, few methods exist for the rapid suppression of cyanobacterial blooms. Since laboratory studies indicated that cyanobacteria are more sensitive to hydrogen peroxide (H(2)O(2)) than eukaryotic phytoplankton, we tested the application of H(2)O(2) in natural waters. First, we exposed water samples from a recreational lake dominated by the toxic cyanobacterium Planktothrix agardhii to dilute H(2)O(2). This reduced the photosynthetic vitality by more than 70% within a few hours. Next, we installed experimental enclosures in the lake, which revealed that H(2)O(2) selectively killed the cyanobacteria without major impacts on eukaryotic phytoplankton, zooplankton, or macrofauna. Based on these tests, we introduced 2 mg L(-1) (60 μM) of H(2)O(2) homogeneously into the entire water volume of the lake with a special dispersal device, called the water harrow. The cyanobacterial population as well as the microcystin concentration collapsed by 99% within a few days. Eukaryotic phytoplankton (including green algae, cryptophytes, chrysophytes and diatoms), zooplankton and macrofauna remained largely unaffected. Following the treatment, cyanobacterial abundances remained low for 7 weeks. Based on these results, we propose the use of dilute H(2)O(2) for the selective elimination of harmful cyanobacteria from recreational lakes and drinking water reservoirs, especially when immediate action is urgent and/or cyanobacterial control by reduction of eutrophication is currently not feasible. A key advantage of this method is that the added H(2)O(2) degrades to water and oxygen within a few days, and thus leaves no long-term chemical traces in the environment.


Plant Physiology | 2007

Long-Term Response toward Inorganic Carbon Limitation in Wild Type and Glycolate Turnover Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803

Marion Eisenhut; Eneas Aguirre von Wobeser; Ludwig Jonas; Hendrik Schubert; Bastiaan Willem Ibelings; Hermann Bauwe; H.C.P. Matthijs; Martin Hagemann

Concerted changes in the transcriptional pattern and physiological traits that result from long-term (here defined as up to 24 h) limitation of inorganic carbon (Ci) have been investigated for the cyanobacterium Synechocystis sp. strain PCC 6803. Results from reverse transcription-polymerase chain reaction and genome-wide DNA microarray analyses indicated stable up-regulation of genes for inducible CO2 and HCO3− uptake systems and of the rfb cluster that encodes enzymes involved in outer cell wall polysaccharide synthesis. Coordinated up-regulation of photosystem I genes was further found and supported by a higher photosystem I content and activity under low Ci (LC) conditions. Bacterial-type glycerate pathway genes were induced by LC conditions, in contrast to the genes for the plant-like photorespiratory C2 cycle. Down-regulation was observed for nitrate assimilation genes and surprisingly also for almost all carboxysomal proteins. However, for the latter the observed elongation of the half-life time of the large subunit of Rubisco protein may render compensation. Mutants defective in glycolate turnover (ΔglcD and ΔgcvT) showed some transcriptional changes under high Ci conditions that are characteristic for LC conditions in wild-type cells, like a modest down-regulation of carboxysomal genes. Properties under LC conditions were comparable to LC wild type, including the strong response of genes encoding inducible high-affinity Ci uptake systems. Electron microscopy revealed a conspicuous increase in number of carboxysomes per cell in mutant ΔglcD already under high Ci conditions. These data indicate that an increased level of photorespiratory intermediates may affect carboxysomal components but does not intervene with the expression of majority of LC inducible genes.


FEBS Letters | 2005

The chlorophyll-binding protein IsiA is inducible by high light and protects the cyanobacterium Synechocystis PCC6803 from photooxidative stress

Michel Havaux; Geneviève Guedeney; Martin Hagemann; Nataliya Yeremenko; H.C.P. Matthijs; Robert Jeanjean

The products of the isiAB operon are a chlorophyll antenna protein (IsiA) and flavodoxin (IsiB), which accumulate in cyanobacteria grown under iron starvation conditions. Here we show that strong light triggers de‐repression of isiAB transcription and leads to IsiA and flavodoxin accumulation under iron replete conditions. Genetic deletion of isiAB resulted in a photosensitive phenotype, with accumulation of reactive oxygen species and cell bleaching in high light, while the flavodoxin‐deficient isiB null mutant expressing isiA was phototolerant. We conclude that IsiA protects cyanobacteria from photooxidative stress. IsiA is the first example of a chlorophyll antenna protein outside the extended LHC family that is induced transiently by high light and that fulfills a photoprotective role.


Biochimica et Biophysica Acta | 2000

Salt shock-inducible Photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain

J.J. van Thor; Robert Jeanjean; Michel Havaux; Klaas Sjollema; Françoise Joset; Klaas J. Hellingwerf; H.C.P. Matthijs

Relative to ferredoxin:NADP(+) reductase (FNR) from chloroplasts, the comparable enzyme in cyanobacteria contains an additional 9 kDa domain at its amino-terminus. The domain is homologous to the phycocyanin associated linker polypeptide CpcD of the light harvesting phycobilisome antennae. The phenotypic consequences of the genetic removal of this domain from the petH gene, which encodes FNR, have been studied in Synechocystis PCC 6803. The in frame deletion of 75 residues at the amino-terminus, rendered chloroplast length FNR enzyme with normal functionality in linear photosynthetic electron transfer. Salt shock correlated with increased abundance of petH mRNA in the wild-type and mutant alike. The truncation stopped salt stress-inducible increase of Photosystem I-dependent cyclic electron flow. Both photoacoustic determination of the storage of energy from Photosystem I specific far-red light, and the re-reduction kinetics of P700(+), suggest lack of function of the truncated FNR in the plastoquinone-cytochrome b(6)f complex reductase step of the PS I-dependent cyclic electron transfer chain. Independent gold-immunodecoration studies and analysis of FNR distribution through activity staining after native polyacrylamide gelelectrophoresis showed that association of FNR with the thylakoid membranes of Synechocystis PCC 6803 requires the presence of the extended amino-terminal domain of the enzyme. The truncated DeltapetH gene was also transformed into a NAD(P)H dehydrogenase (NDH1) deficient mutant of Synechocystis PCC 6803 (strain M55) (T. Ogawa, Proc. Natl. Acad. Sci. USA 88 (1991) 4275-4279). Phenotypic characterisation of the double mutant supported our conclusion that both the NAD(P)H dehydrogenase complex and FNR contribute independently to the quinone cytochrome b(6)f reductase step in PS I-dependent cyclic electron transfer. The distribution, binding properties and function of FNR in the model cyanobacterium Synechocystis PCC 6803 will be discussed.


Physiologia Plantarum | 2012

Time‐series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803

V. Krasikov; Eneas Aguirre von Wobeser; Henk L. Dekker; Jef Huisman; H.C.P. Matthijs

Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h, the transcriptome showed activation of nitrogen uptake and assimilation systems and of the core nitrogen and carbon assimilation regulators. However, the nitrogen-deprived cells still grew at the same rate as the control and even showed transiently increased expression of phycobilisome genes. After 12 h, cell growth decreased and chlorosis started with degradation of the nitrogen-rich phycobilisomes. During this phase, the transcriptome showed suppression of genes for phycobilisomes, for carbon fixation and for de novo protein synthesis. Interestingly, photosynthetic activity of both photosystem I (PSI) and photosystem II was retained quite well. Excess electrons were quenched by the induction of terminal oxidase and hydrogenase genes, compensating for the diminished carbon fixation and nitrate reduction activity. After 48 h, the cells ceased most activities. A marked exception was the retained PSI gene transcription, possibly this supports the viability of Synechocystis cells and enables rapid recovery after relieving from nitrogen starvation. During early recovery, many genes changed expression, supporting the resumed cellular activity. In total, our results distinguished three phases during gradual nitrogen depletion: (1) an immediate response, (2) short-term acclimation and (3) long-term survival. This shows that cyanobacteria respond to nitrogen starvation by a cascade of physiological adaptations reflected by numerous changes in the transcriptome unfolding at different timescales.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Principles of the light-limited chemostat: theory and ecological applications

Jef Huisman; H.C.P. Matthijs; Petra M. Visser; Hans Balke; Corrien A.M. Sigon; Jutta Passarge; Franz J. Weissing; Luuc R. Mur

Light is the energy source that drives nearly all ecosystems on planet Earth. Yet, light limitation is still poorly understood. In this paper, we present an overview of the principles of the light-limited chemostat. The theory for light-limited chemostats differs considerably from the standard theory for substrate-limited chemostats. In particular, photons cannot be mixed by vigorous stirring, so that phototrophic organisms experience the light-limited chemostat as a heterogeneous environment. Similar to substrate-limited chemostats, however, light-limited chemostats do reach a steady state. This allows the study of phototrophic microorganisms under well-controlled light conditions, at a constant specific growth rate, for a prolonged time. The theory of the light-limited chemostat is illustrated with several examples from laboratory experiments, and a variety of ecological applications are discussed.


FEBS Letters | 2005

Structure and functional role of supercomplexes of IsiA and Photosystem I in cyanobacterial photosynthesis

Roman Kouřil; Ana A. Arteni; Julia Lax; Nataliya Yeremenko; Sandrine D’Haene; Matthias Rögner; H.C.P. Matthijs; Jan P. Dekker; Egbert J. Boekema

Cyanobacteria express large quantities of the iron stress‐inducible protein IsiA under iron deficiency. IsiA can assemble into numerous types of single or double rings surrounding Photosystem I. These supercomplexes are functional in light‐harvesting, empty IsiA rings are effective energy dissipaters. Electron microscopy studies of these supercomplexes show that Photosystem I trimers bind 18 IsiA copies in a single ring, whereas monomers may bind up to 35 copies in two rings. Work on mutants indicates that the PsaF/J and PsaL subunits facilitate the formation of closed rings around Photosystem I monomers but are not obligatory components in the formation of Photosystem I–IsiA supercomplexes.

Collaboration


Dive into the H.C.P. Matthijs's collaboration.

Top Co-Authors

Avatar

Jef Huisman

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Robert Jeanjean

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luuc R. Mur

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Havaux

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

V. Krasikov

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Françoise Joset

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

S. D'Haene

VU University Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge