Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. C. Stempels is active.

Publication


Featured researches published by H. C. Stempels.


The Astrophysical Journal | 2009

WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered

L. Hebb; Andrew Collier-Cameron; B. Loeillet; Don Pollacco; G. Hébrard; R. A. Street; F. Bouchy; H. C. Stempels; C. Moutou; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson; I. McDonald; N. P. Gibson; S. Aigrain; D. R. Anderson; Chris R. Benn; D. J. Christian; B. Enoch; C. A. Haswell; C. Hellier; K. Horne; J. Irwin; T. A. Lister; P. F. L. Maxted; Michel Mayor; A. J. Norton

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


The Astrophysical Journal | 2010

Metals in the Exosphere of the Highly Irradiated Planet WASP-12b

L. Fossati; C. A. Haswell; Cynthia S. Froning; L. Hebb; S. Holmes; U. Kolb; Ch. Helling; A. Carter; P. J. Wheatley; Andrew Collier Cameron; B. Loeillet; Don Pollacco; R. A. Street; H. C. Stempels; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson

We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 angstrom), NUVB (2655-2696 angstrom), and NUVC (2770-2811 angstrom). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5 sigma level. We detect extra absorption in the Mg II lambda lambda 2800 resonance line cores at the 2.8 sigma level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 +/- 0.24 R-J, 2.18 +/- 0.18 R-J, and 2.66 +/- 0.22 R-J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.


Monthly Notices of the Royal Astronomical Society | 2008

WASP-3b: a strongly irradiated transiting gas-giant planet

Don Pollacco; I. Skillen; A. Collier Cameron; B. Loeillet; H. C. Stempels; F. Bouchy; N. P. Gibson; L. Hebb; G. Hébrard; Y. C. Joshi; I. McDonald; B. Smalley; A. M. S. Smith; R. A. Street; S. Udry; Richard G. West; D. M. Wilson; P. J. Wheatley; Suzanne Aigrain; K. Alsubai; Chris R. Benn; V. A. Bruce; D. J. Christian; W. I. Clarkson; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; C. Hellier; Samantha Hickey

We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.0 1256−0285133 every 1.846 834 ± 0.000 002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have T eff = 6400 ± 100 K and log g = 4.25 ± 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76 +0.08 −0.14 MJ and radius 1.31 +0.07 −0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.


Scopus | 2009

WASP-12b: The hottest transiting extrasolar planet yet discovered

L. Hebb; Andrew Collier-Cameron; H. C. Stempels; B. Enoch; K. Horne; N. Parley; B. Loeillet; C. Moutou; Don Pollacco; E. K. Simpson; Y. C. Joshi; N. P. Gibson; D. J. Christian; G. Hébrard; Francois Bouchy; R. A. Street; T. A. Lister; S. Udry; M. Mayor; D. Queloz; Richard G. West; I. Skillen; Chris R. Benn; D. M. Wilson; I. McDonald; Anderson; C. Hellier; P. F. L. Maxted; B. Smalley; S. Aigrain

We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.


Astronomy and Astrophysics | 2002

Detailed analysis of Balmer lines in cool dwarf stars

Paul Barklem; H. C. Stempels; C. Allende Prieto; Oleg Kochukhov; Nikolai Piskunov; B. J. O'Mara

An analysis of H and H spectra in a sample of 30 cool dwarf and subgiant stars is presented using MARCS model atmospheres based on the most recent calculations of the line opacities. A detailed quantitative comparison of the solar flux spectra with model spectra shows that Balmer line prole shapes, and therefore the temperature structure in the line formation region, are best represented under the mixing length theory by any combination of a low mixing-length parameter and a low convective structure parameter y. A slightly lower eective temperature is obtained for the sun than the accepted value, which we attribute to errors in models and line opacities. The programme stars span temperatures from 4800 to 7100 K and include a small number of population II stars. Eective temperatures have been derived using a quantitative tting method with a detailed error analysis. Our temperatures nd good agreement with those from the Infrared Flux Method (IRFM) near solar metallicity but show dierences at low metallicity where the two available IRFM determinations themselves are in disagreement. Comparison with recent temperature determinations using Balmer lines by Fuhrmann (1998, 2000), who employed a dierent description of the wing absorption due to self-broadening, does not show the large dierences predicted by Barklem et al. (2000b). In fact, perhaps fortuitously, reasonable agreement is found near solar metallicity, while we nd signicantly cooler temperatures for low metallicity stars of around solar temperature.


Monthly Notices of the Royal Astronomical Society | 2009

Surface magnetic fields on two accreting T Tauri stars: CV Cha and CR Cha

G. A. J. Hussain; A. Collier Cameron; M. Jardine; Nick Dunstone; J. C. Ramirez Velez; H. C. Stempels; J.-F. Donati; M. Semel; G. Aulanier; Tim J. Harries; J. Bouvier; Catherine Dougados; J. Ferreira; B. D. Carter; Warrick A. Lawson

We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G- and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3–5 Myr. Our magnetic field maps show evidence for strong, complex multipolar fields similar to those obtained for young rapidly rotating main-sequence stars. Brightness maps indicate the presence of dark polar caps and low-latitude spots – these brightness maps are very similar to those obtained for other pre-main-sequence and rapidly rotating main-sequence stars. Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star. We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.


Monthly Notices of the Royal Astronomical Society | 2009

WASP-10b: a 3MJ, gas-giant planet transiting a late-type K star

D. J. Christian; N. P. Gibson; E. K. Simpson; R. A. Street; I. Skillen; Don Pollacco; A. Collier Cameron; Y. C. Joshi; F. P. Keenan; H. C. Stempels; C. A. Haswell; K. Horne; D. R. Anderson; S. J. Bentley; F. Bouchy; W. I. Clarkson; B. Enoch; L. Hebb; G. Hébrard; C. Hellier; J. Irwin; S. R. Kane; Tim Lister; B. Loeillet; P. F. L. Maxted; Michel Mayor; I. McDonald; C. Moutou; A. J. Norton; N. Parley

We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the WASP Consortium and confirmed using NOT FIES and SOPHIE radial velocity data. A 3.09 day period, 29 mmag transit depth, and 2.36 hour duration are derived for WASP-10b using WASP and high precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov-chain Monte Carlo procedure leads to a planet radius of 1.28RJ, a mass of 2.96MJ and eccentricity of �0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than �2MJ and non-zero eccentricities. WASP-10’s host star, GSC 2752-00114 (USNO-B1.0 1214-0586164) is among the fainter stars in the WASP sample, with V=12.7 and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.


Scopus | 2009

WASP-10b: A 3M , gas-giant planet transiting a late-type K star

D. J. Christian; N. P. Gibson; E. K. Simpson; R. A. Street; Don Pollacco; Y. C. Joshi; F. P. Keenan; R. Ryans; I. Todd; T. A. Lister; I. Skillen; A. Collier Cameron; H. C. Stempels; K. Horne; L. Hebb; A. M. S. Smith; Ca. Haswell; W. I. Clarkson; B. Enoch; A. J. Norton; N. Parley; D. R. Anderson; S. J. Bentley; C. Hellier; P. F. L. Maxted; I. McDonald; B. Smalley; D. M. Wilson; F. Bouchy; G. Hébrard

We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the WASP Consortium and confirmed using NOT FIES and SOPHIE radial velocity data. A 3.09 day period, 29 mmag transit depth, and 2.36 hour duration are derived for WASP-10b using WASP and high precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov-chain Monte Carlo procedure leads to a planet radius of 1.28RJ, a mass of 2.96MJ and eccentricity of �0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than �2MJ and non-zero eccentricities. WASP-10’s host star, GSC 2752-00114 (USNO-B1.0 1214-0586164) is among the fainter stars in the WASP sample, with V=12.7 and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.


Monthly Notices of the Royal Astronomical Society | 2011

The spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter–McLaughlin observations

E. K. Simpson; Don Pollacco; A. Collier Cameron; G. Hébrard; D. R. Anderson; S. C. C. Barros; I. Boisse; F. Bouchy; F. Faedi; Michaël Gillon; L. Hebb; F. P. Keenan; G. R. M. Miller; C. Moutou; D. Queloz; I. Skillen; P. M. Sorensen; H. C. Stempels; A. H. M. J. Triaud; C. A. Watson; Paul A. Wilson

We present observations of the Rossiter-McLaughlin effect for the transiting exoplanet systems WASP-1, WASP-24, WASP-38 and HAT-P-8, and deduce the orientations of the planetary orbits with respect to the host stars’ rotatio n axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin orbit angles consistent with zero: � = 4:7 ± 4:0 � , � =15 +33 � −43� and� = 9:7 +9.0 � −7.7� , respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spinorbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, � = 79:0 +4.5 � −4.3� . It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.


Monthly Notices of the Royal Astronomical Society | 2007

WASP-1: a lithium- and metal-rich star with an oversized planet

H. C. Stempels; A. Collier Cameron; L. Hebb; B. Smalley; S. Frandsen

In this paper we present our results of a comprehensive spectroscopic analysis of WASP-1, the host star to the exoplanet WASP-1b. We derive Te = 6110 45 K, logg = 4:28 0:15, and [M/H] = 0:23 0:08, and also a high abundance of lithium, logn(Li) = 2:91 0:05. These parameters suggests an age for the system of 1{3 Gyr and a stellar mass of 1.25{1.35 M . This means that WASP-1 has properties very similar to those of HD 149026, the host star for the highest density planet yet detected. Moreover, their planets orbit at comparable distances and receive comparable irradiating uxes from their host stars. However, despite the similarity of WASP-1 with HD 149026, their planets have strongly dierent densities. This suggests that gas-giant planet density is not a simple function of host-star metallicity or of radiation environment at ages of 2 Gyr.

Collaboration


Dive into the H. C. Stempels's collaboration.

Top Co-Authors

Avatar

L. Hebb

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. K. Simpson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

I. Skillen

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. A. Street

Las Cumbres Observatory Global Telescope Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Hébrard

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge