Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Christina Fan is active.

Publication


Featured researches published by H. Christina Fan.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood

H. Christina Fan; Yair J. Blumenfeld; Usha Chitkara; Louanne Hudgins; Stephen R. Quake

We directly sequenced cell-free DNA with high-throughput shotgun sequencing technology from plasma of pregnant women, obtaining, on average, 5 million sequence tags per patient sample. This enabled us to measure the over- and underrepresentation of chromosomes from an aneuploid fetus. The sequencing approach is polymorphism-independent and therefore universally applicable for the noninvasive detection of fetal aneuploidy. Using this method, we successfully identified all nine cases of trisomy 21 (Down syndrome), two cases of trisomy 18 (Edward syndrome), and one case of trisomy 13 (Patau syndrome) in a cohort of 18 normal and aneuploid pregnancies; trisomy was detected at gestational ages as early as the 14th week. Direct sequencing also allowed us to study the characteristics of cell-free plasma DNA, and we found evidence that this DNA is enriched for sequences from nucleosomes.


Nature Biotechnology | 2011

The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

Xun Xu; Harish Nagarajan; Nathan E. Lewis; Shengkai Pan; Zhiming Cai; Xin Liu; Wenbin Chen; Min Xie; Wenliang Wang; Stephanie Hammond; Mikael Rørdam Andersen; Norma F. Neff; Benedetto Passarelli; Winston Koh; H. Christina Fan; Jianbin Wang; Yaoting Gui; Kelvin H. Lee; Michael J. Betenbaugh; Stephen R. Quake; Iman Famili; Bernhard O. Palsson; Jun Wang

Chinese hamster ovary (CHO)–derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns. Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance property of CHO cell lines. We discuss how the availability of this genome sequence may facilitate genome-scale science for the optimization of biopharmaceutical protein production.


Nature Biotechnology | 2011

Whole-genome molecular haplotyping of single cells

H. Christina Fan; Jianbin Wang; Anastasia Potanina; Stephen R. Quake

Conventional experimental methods of studying the human genome are limited by the inability to independently study the combination of alleles, or haplotype, on each of the homologous copies of the chromosomes. We developed a microfluidic device capable of separating and amplifying homologous copies of each chromosome from a single human metaphase cell. Single-nucleotide polymorphism (SNP) array analysis of amplified DNA enabled us to achieve completely deterministic, whole-genome, personal haplotypes of four individuals, including a HapMap trio with European ancestry (CEU) and an unrelated European individual. The phases of alleles were determined at ∼99.8% accuracy for up to ∼96% of all assayed SNPs. We demonstrate several practical applications, including direct observation of recombination events in a family trio, deterministic phasing of deletions in individuals and direct measurement of the human leukocyte antigen haplotypes of an individual. Our approach has potential applications in personal genomics, single-cell genomics and statistical genetics.


Cell | 2012

Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm

Jianbin Wang; H. Christina Fan; B. Behr; Stephen R. Quake

Meiotic recombination and de novo mutation are the two main contributions toward gamete genome diversity, and many questions remain about how an individual humans genome is edited by these two processes. Here, we describe a high-throughput method for single-cell whole-genome analysis that was used to measure the genomic diversity in one individuals gamete genomes. A microfluidic system was used for highly parallel sample processing and to minimize nonspecific amplification. High-density genotyping results from 91 single cells were used to create a personal recombination map, which was consistent with population-wide data at low resolution but revealed significant differences from pedigree data at higher resolution. We used the data to test for meiotic drive and found evidence for gene conversion. High-throughput sequencing on 31 single cells was used to measure the frequency of large-scale genome instability, and deeper sequencing of eight single cells revealed de novo mutation rates with distinct characteristics.


Nature | 2012

Non-invasive prenatal measurement of the fetal genome

H. Christina Fan; Wei Gu; Jianbin Wang; Yair J. Blumenfeld; Yasser Y. El-Sayed; Stephen R. Quake

The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease.


PLOS ONE | 2010

Sensitivity of Noninvasive Prenatal Detection of Fetal Aneuploidy from Maternal Plasma Using Shotgun Sequencing Is Limited Only by Counting Statistics

H. Christina Fan; Stephen R. Quake

We recently demonstrated noninvasive detection of fetal aneuploidy by shotgun sequencing cell-free DNA in maternal plasma using next-generation high throughput sequencer. However, GC bias introduced by the sequencer placed a practical limit on the sensitivity of aneuploidy detection. In this study, we describe a method to computationally remove GC bias in short read sequencing data by applying weight to each sequenced read based on local genomic GC content. We show that sensitivity is limited only by counting statistics and that sensitivity can be increased to arbitrary precision in sample containing arbitrarily small fraction of fetal DNA simply by sequencing more DNA molecules. High throughput shotgun sequencing of maternal plasma DNA should therefore enable noninvasive diagnosis of any type of fetal aneuploidy.


BMC Genomics | 2009

Digital PCR provides sensitive and absolute calibration for high throughput sequencing

Richard A White; Paul C. Blainey; H. Christina Fan; Stephen R. Quake

BackgroundNext-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing.ResultsWe demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth.ConclusionThe digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.


eLife | 2013

The genome sequence of the colonial chordate, Botryllus schlosseri

Ayelet Voskoboynik; Norma F. Neff; Debashis Sahoo; Aaron M. Newman; Dmitry Pushkarev; Winston Koh; Benedetto Passarelli; H. Christina Fan; Gary L. Mantalas; Karla J. Palmeri; Katherine J. Ishizuka; Carmela Gissi; Francesca Griggio; Rachel Ben-Shlomo; Daniel M. Corey; Lolita Penland; Richard A White; Irving L. Weissman; Stephen R. Quake

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI: http://dx.doi.org/10.7554/eLife.00569.001


Clinical Chemistry | 2010

Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing

H. Christina Fan; Yair J. Blumenfeld; Usha Chitkara; Louanne Hudgins; Stephen R. Quake

BACKGROUND Noninvasive prenatal diagnosis with cell-free DNA in maternal plasma is challenging because only a small portion of the DNA sample is derived from the fetus. A few previous studies provided size-range estimates of maternal and fetal DNA, but direct measurement of the size distributions is difficult because of the small quantity of cell-free DNA. METHODS We used high-throughput paired-end sequencing to directly measure the size distributions of maternal and fetal DNA in cell-free maternal plasma collected from 3 typical diploid and 4 aneuploid male pregnancies. As a control, restriction fragments of lambda DNA were also sequenced. RESULTS Cell-free DNA had a dominant peak at approximately 162 bp and a minor peak at approximately 340 bp. Chromosome Y sequences were rarely longer than 250 bp but were present in sizes of <150 bp at a larger proportion compared with the rest of the sequences. Selective analysis of the shortest fragments generally increased the fetal DNA fraction but did not necessarily increase the sensitivity of aneuploidy detection, owing to the reduction in the number of DNA molecules being counted. Restriction fragments of lambda DNA with sizes between 60 bp and 120 bp were preferentially sequenced, indicating that the shotgun sequencing work flow introduced a bias toward shorter fragments. CONCLUSIONS Our results confirm that fetal DNA is shorter than maternal DNA. The enrichment of fetal DNA by size selection, however, may not provide a dramatic increase in sensitivity for assays that rely on length measurement in situ because of a trade-off between the fetal DNA fraction and the number of molecules being counted.


American Journal of Obstetrics and Gynecology | 2009

Microfluidic digital PCR enables rapid prenatal diagnosis of fetal aneuploidy

H. Christina Fan; Yair J. Blumenfeld; Yasser Y. El-Sayed; Jane Chueh; Stephen R. Quake

OBJECTIVE The purpose of this study was to demonstrate that digital polymerase chain reaction (PCR) enables rapid, allele independent molecular detection of fetal aneuploidy. STUDY DESIGN Twenty-four amniocentesis and 16 chorionic villus samples were used for microfluidic digital PCR analysis. Three thousand and sixty PCR reactions were performed for each of the target chromosomes (X, Y, 13, 18, and 21), and the number of single molecule amplifications was compared to a reference. The difference between target and reference chromosome counts was used to determine the ploidy of each of the target chromosomes. RESULTS Digital PCR accurately identified all cases of fetal trisomy (3 cases of trisomy 21, 3 cases of trisomy 18, and 2 cases of triosmy 13) in the 40 specimens analyzed. The remaining specimens were determined to have normal ploidy for the chromosomes tested. CONCLUSION Microfluidic digital PCR allows detection of fetal chromosomal aneuploidy utilizing uncultured amniocytes and chorionic villus tissue in less than 6 hours.

Collaboration


Dive into the H. Christina Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Winston Koh

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianbin Wang

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Benedetto Passarelli

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard A White

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge