H De Smedt
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H De Smedt.
The Journal of Physiology | 1990
Ludwig Missiaen; I Declerck; Guillaume Droogmans; L Plessers; H De Smedt; Luc Raeymaekers; Rik Casteels
1. The properties of intracellular Ca2+ stores of intact‐ and of saponin‐skinned A7r5 (an established cell line from embryonic rat aorta) smooth muscle cells were studied by measuring 45Ca2+ and 54Mn2+ fluxes. 2. Application of 5 microM‐vasopressin to intact cells increased the fractional loss of 45Ca2+ in Ca2(+)‐free solution by a factor of 5.2. This effect was not influenced by a pre‐incubation with 10 microM‐ryanodine. Caffeine (25 mM) did not stimulate the fractional loss of 45Ca2+ from intact cells. 3. In skinned cells 10 microM‐IP3 (inositol 1,4,5‐trisphosphate) and 5 microM‐A23187 (a calcium ionophore) released the same amount of 45Ca2+. This release did not require GTP and was not affected by a pre‐incubation with 10 microM‐ryanodine. Caffeine (25 mM) did not release stored Ca2+. 4. NaF (1 mM) plus 10 microM‐AlCl3 inhibited by 72% the 45Ca2+ uptake by the IP3‐sensitive store of skinned cells at 0.15 microM‐Ca2+. Cyclic AMP‐dependent protein kinase did not stimulate this ATP‐dependent 45Ca2+ uptake, nor could the presence of phospholamban be demonstrated immunologically. 5. The 45Ca2+ uptake by cells which had been depleted of Ca2+ with 5 microM‐vasopressin was 69% higher than the uptake obtained without such proceeding depletion. This enhanced 45Ca2+ uptake did not occur through voltage‐operated Ca2+ channels, because blockade of these channels with verapamil, or depolarization of the plasma membrane by increasing [K+] from 5.9 to 59 mM in the presence of verapamil, did not modify this uptake. 6. A similar increase of the 54Mn2+ uptake occurred in intact cells with a depleted Ca2+ store. If, however, the cells were first skinned and subsequently exposed to 54Mn2+, the ATP‐dependent 54Mn2+ uptake amounted to less than 6% of the ATP‐dependent 45Ca2+ uptake. 7. If intact cells were first exposed to a 45Ca2(+)‐ or 54Mn2(+)‐containing solution, and subsequently skinned in a non‐radioactive intracellular solution, the addition of 10 microM‐A23187 to these cells released stored Ca2+ or Mn2+. The amount of released Ca2+ was only slightly larger than the amount of released Mn2+. If the intracellular store was depleted before loading, the amount of Ca2+ or Mn2+ released by the ionophore increased by 68 and 28%, respectively. 8. It is concluded that A7r5 smooth muscle cells do not express a Ca2(+)‐induced Ca2+ release mechanism, but do contain an IP3‐induced Ca2+ release mechanism which can release approximately all intracellularly accumulated 45Ca2+.(ABSTRACT TRUNCATED AT 400 WORDS)
Cell Calcium | 1995
Jan B. Parys; H De Smedt; Ludwig Missiaen; Martin D. Bootman; Ilse Sienaert; Rik Casteels
This study concerns the detection and analysis of the highly homologous type II-like inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3R-II, -IV and -V). We have particularly investigated RBL-2H3 cells, which at the mRNA level predominantly expressed InsP3R-IV [De Smedt H. Missiaen L. Parys JB. et al. (1994) Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J. Biol. Chem., 269, 21691-21698]. When measured in identical experimental conditions, microsomes from RBL-2H3 cells were characterized by a much higher InsP3 binding affinity (Kd 3.8 +/- 0.8 nM, Bmax 0.40 +/- 0.08 pmol/mg protein) than microsomes from A7r5 cells (Kd 65 +/- 7 nM, Bmax 0.65 +/- 0.08 pmol/mg protein) or from cerebellum (Kd 135 +/- 14 nM, Bmax 7.35 +/- 1.13 pmol/mg protein). An affinity-purified antibody against the C-terminus of type II-like InsP3Rs detected, after SDS-PAGE and immunoblotting, a 250 kD protein in RBL-2H3 and C3H10T1/2 cells, but not in other cell types. An isoform-specific antibody against the C-terminus of InsP3R-I was used to determine the presence of the various InsP3R-I splice isoforms at the protein level. The 273 kD (brain), 261 kD (peripheral tissues) and 256 kD (Xenopus oocytes) isoforms were recognized. Expression of InsP3R-I in RBL-2H3 cells was very low. Taken together, our results support the hypothesis that InsP3R isoforms may differ to a large extent in their affinity for InsP3 and suggest that RBL-2H3 cells are a useful model for the study of InsP3R-IV.
Cell Calcium | 2003
Geert Callewaert; Jan B. Parys; H De Smedt; Luc Raeymaekers; Frank Wuytack; Jo Vanoevelen; K. Van Baelen; A. Simoni; Rosario Rizzuto; Ludwig Missiaen
Mutations in the ubiquitously expressed secretory-pathway Ca(2+)-ATPase (SPCA1) Ca(2+) pump result in Hailey-Hailey disease, which almost exclusively affects the epidermal part of the skin. We have studied Ca(2+) signaling in human keratinocytes by measuring the free Ca(2+) concentration in the cytoplasm and in the lumen of both the Golgi apparatus and the endoplasmic reticulum. These signals were compared with those recorded in SPCA1-overexpressing and control COS-1 cells. Both the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) and SPCA1 can mediate Ca(2+) uptake into the Golgi stacks. Our results indicate that keratinocytes mainly used the SPCA1 Ca(2+) pump to load the Golgi complex with Ca(2+) whereas the SERCA Ca(2+) pump was mainly used in control COS-1 cells. Cytosolic Ca(2+) signals in keratinocytes induced by extracellular ATP or capacitative Ca(2+) entry were characterized by an unusually long latency reflecting extra Ca(2+) buffering by an SPCA1-containing Ca(2+) store, similarly as in SPCA1-overexpressing COS-1 cells. Removal of extracellular Ca(2+) elicited spontaneous cytosolic Ca(2+) transients in keratinocytes, similarly as in SPCA1-overexpressing COS-1 cells. With respect to Ca(2+) signaling keratinocytes and SPCA1-overexpressing COS-1 cells therefore behaved similarly but differed from control COS-1 cells. The relatively large contribution of the SPCA1 pumps for loading the Golgi stores with Ca(2+) in keratinocytes may, at least partially, explain why mutations in the SPCA1 gene preferentially affect the skin in Hailey-Hailey patients.
Cell Death and Disease | 2013
Haidar Akl; Giovanni Monaco; R. La Rovere; Kirsten Welkenhuyzen; Santeri Kiviluoto; Tim Vervliet; Jordi Molgó; Clark W. Distelhorst; Ludwig Missiaen; Katsuhiko Mikoshiba; Jan B. Parys; H De Smedt; Geert Bultynck
Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDPS)) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca2+ signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDPS in a more heterogeneous Bcl-2-dependent cancer model using a set of ‘primed to death’ diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDPS with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDPS to promote IP3R-mediated Ca2+ release. Although total IP3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDPS-induced Ca2+ rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP3R2-protein level, but not with IP3R1-, IP3R3- or total IP3R-expression levels. Inhibiting or knocking down IP3R2 activity in SU-DHL-4-reduced TAT-IDPS-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP3R2 and to promote IP3-induced pro-apoptotic Ca2+ signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP3R hyperactivity. In particular, cancer cells expressing high levels of IP3R2 are addicted to IP3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca2+ signaling and cell death.
Cell Calcium | 1994
Bernard Himpens; H De Smedt; Rik Casteels
The free calcium concentration in nucleus ([Ca2+]n) and in cytoplasm ([Ca2+]c) of single cells were estimated by confocal laser microscopy using the Ca(2+)-indicator Indo-1. It is shown that in various cell types a nucleo-cytosolic Ca(2+)-gradient is present at rest and during stimulation. The direction and the extent of the nucleo-cytosolic Ca(2+)-gradient may vary with the cell type, differentiation status, phosphorylation conditions and also with the type of agonist. Evidence is given for the role of extra- and intranuclear storage sites as well as for Ca(2+)-influx. Finally potential artefactual interference with the measurements is discussed.
Biochemical Journal | 2000
Sara Vanlingen; Henk Sipma; P De Smet; Geert Callewaert; Ludwig Missiaen; H De Smedt; Jan B. Parys
We have expressed the N-terminal 581 amino acids of type 1 myo-inositol 1,4,5-trisphosphate receptor (IP(3)R1), IP(3)R2 and IP(3)R3 as recombinant proteins [ligand-binding site 1 (lbs-1), lbs-2, lbs-3] in the soluble fraction of Escherichia coli. These recombinant proteins contain the complete IP(3)-binding domain and bound IP(3) and adenophostin A with high affinity. Ca(2+) and calmodulin were previously found to maximally inhibit IP(3) binding to lbs-1 by 42+/-6 and 43+/-6% respectively, and with an IC(50) of approx. 200 nM and 3 microM respectively [Sipma, De Smet, Sienaert, Vanlingen, Missiaen, Parys and De Smedt (1999) J. Biol. Chem. 274, 12157-12562]. We now report that Ca(2+) inhibited IP(3) binding to lbs-3 with an IC(50) of approx. 700 nM (37+/-4% inhibition at 5 microM Ca(2+)), while IP(3) binding to lbs-2 was not affected by increasing [Ca(2+)] from 100 nM to 25 microM. Calmodulin (10 microM) inhibited IP(3) binding to lbs-3 by 37+/-4%, while IP(3) binding to lbs-2 was inhibited by only 11+/-2%. The inhibition of IP(3) binding to lbs-3 by calmodulin was dose-dependent (IC(50) approximately 2 microM). We conclude that the IP(3)-binding domains of the various IP(3)R isoforms differ in binding characteristics for IP(3) and adenophostin A, and are differentially modulated by Ca(2+) and calmodulin, suggesting that the various IP(3)R isoforms can have different intracellular functions.
Cell Death and Disease | 2012
Santeri Kiviluoto; Lars Schneider; Tomas Luyten; Tim Vervliet; Ludwig Missiaen; H De Smedt; J B Parys; Axel Methner; Geert Bultynck
Dear Editor, Bax Inhibitor-1 (BI-1) is an evolutionary conserved endoplasmic reticulum (ER)-located protein that protects against ER stress-induced apoptosis.1 This function has been closely related to its ability to permeate Ca2+ from the ER2 and to lower the steady-state [Ca2+]ER.3 BI-1 may function as an H+/Ca2+-antiporter2 or Ca2+ channel.4 Recently, BI-1 was proposed as a negative regulator of autophagy through IRE1α.5 However, recent findings indicate that BI-1 may promote autophagy.6 The latter required the presence of the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R). The observations were explained through BI-1-enhanced IP3R activity, which lowered steady-state [Ca2+]ER, reducing ER-mitochondrial Ca2+ transfer and decreasing mitochondrial bio-energetics.7 However, direct evidence that BI-1 binds to IP3Rs and sensitizes IP3-induced Ca2+ release (IICR) is lacking. Therefore, we studied the regulation of IP3R function by BI-1 (see Supplementary Information for Methods). We constructed a 5xMyc-BI-1-expression plasmid, allowing the detection and purification of ectopically expressed BI-1 from transfected HeLa cells using anti-Myc-agarose beads (Figure 1a). Using isoform-specific IP3R antibodies, we demonstrated the co-immunoprecipitation of IP3R1 and IP3R3 with 5xMyc-BI-1 from HeLa cell lysates. Next, we screened for the subdomain of BI-1 responsible for IP3R interaction. We found that a synthetic Flag-tagged peptide containing BI-1s Ca2+-channel pore domain (CTP1; amino acids 198–217 of human BI-1) interacted with IP3R1 (Figure 1b). Lysates not exposed to Flag-CTP1 served as negative control. Moreover, proteolytic fragments of the IP3R containing its C terminus (indicated as IP3R1-Cterm in Figure 1b) were immunoprecipitated with Flag-CTP1. These C-terminal fragments were recognized by our antibody (Rbt03) that has its epitope in the last 15 C-terminal amino acids of the IP3R1.8 These fragments include the Ca2+-channel pore of the IP3R1, indicating that the Ca2+-channel pore domain of BI-1 interacted with the Ca2+-channel pore domain of IP3R1. Next, we examined the effect of BI-1 on IP3R function. Therefore, we used BI-1−/− mouse embryonic fibroblasts (MEF) and stably and ectopically overexpressed either empty vector (RFP-only), wild-type BI-1 or BI-1D213R with a bi-cistronic C-terminal IRES-RFP reporter. BI-1D213R is a mutant, in which the Asp213 critical for BI-1-mediated Ca2+ flux is altered into an Arg and which fails to lower [Ca2+]ER.4 BI-1-mRNA expression was detected using specific primers, and similar expression levels were found for wild-type BI-1 and BI-1D213R, while no signal was observed in vector-expressing BI-1−/− MEF cells (inset Figure 1c). Wild-type BI-1, but not BI-1D213R, overexpression significantly improved cell survival after thapsigargin exposure, an irreversible SERCA inhibitor, which kills cells through ER stress (empty vector: 33.65±4.48% wild-type BI-1: 44.39±5.31%* BI-1D213R: 34.14±4.19% surviving cells after 48 h, 20 nM thapsigargin normalized to vehicle-treated cells expressing empty vector. Mean±S.E.M. of four pooled experiments done in triplicates is shown, *P<0.05 Students t-test). These data indicate that BI-1s Ca2+-flux properties are essential for BI-1s anti-apoptotic function. Next, we analyzed the direct effect of ectopically expressed BI-1 on IP3R function in the absence of endogenous BI-1 (Figure 1c). We used a unidirectional 45Ca2+-flux assay in saponin-permeabilized BI-1−/− MEF cells, allowing direct ER access and an accurate analysis of IP3R function in the absence of plasmalemmal Ca2+ fluxes, SERCA activity or mitochondrial Ca2+ uptake.8 Cells ectopically overexpressing BI-1 displayed a sensitized IICR and concomitant decrease in EC50 from 3.57 μM to 2.25 μM IP3. To exclude that Ca2+ flux mediated by BI-1 indirectly sensitized IP3Rs through Ca2+-induced Ca2+ release, we examined the effect of BI-1D213R overexpression on IP3R function. BI-1D213R also sensitized IICR and concomitantly decreased the EC50 from 3.57 μM to 1.98 μM IP3. This correlates with the ability of BI-1D213R to co-immunoprecipitate with IP3Rs (Figure 1a). Collectively, these data indicate a direct sensitizing effect of BI-1 on IP3Rs, which may contribute to a decrease in steady-state [Ca2+]ER and mitochondrial bioenergetics and subsequent induction of basal autophagy. Figure 1 (a) Interaction of 5xMyc-BI-1 and 5xMyc-BI-1D213R with IP3R channels. BI-1 and BI-1D213R were expressed as 5xMyc-tagged fusion proteins. The empty 5xMyc vector was used as negative control. The vectors were transfected into HeLa cells for 2 days allowing ...
The Journal of Membrane Biology | 2001
M. Malfait; P. Gomez; T. A. B. van Veen; Jan B. Parys; H De Smedt; Johan Vereecke; Bernard Himpens
Abstract. Previous results demonstrated that the intercellular communication mediated by gap junctions in retinal pigment epithelial (RPE) cells from the healthy Long Evans (LE) rat strain is higher than that from the dystrophic Royal College of Surgeons (RCS) rat strain. We examined connexin (Cx) expression in both cell types. At the mRNA level, a qualitatively similar expression pattern was found whereby Cx26, Cx32, Cx36, Cx43, Cx45 and Cx46 were all expressed. At the protein level, only Cx43 and Cx46 were detected. Expression of both isoforms was higher in LE-RPE as compared to RCS-RPE by a factor of 1.25 and 2 respectively. Phosphorylation of Cx43 was increased upon activation of protein kinase C (PKC) by 1 μM phorbol 12-myristate 13-acetate (PMA). The phosphorylation status was not changed in hyperglycemic conditions, but this treatment strongly decreased total Cx43 levels to about 75 and 40% (in LE-RPE and RCS-RPE cells respectively) of the control level in LE-RPE cells. This decrease could be overcome by PKC downregulation. These results demonstrate that PKC activation and hyperglycemic conditions have different effects on Cx43 and that PKC is involved in the metabolic pathway induced by hyperglycemic conditions.
Pflügers Archiv: European Journal of Physiology | 2003
Geert Bultynck; Ilse Sienaert; Jan B. Parys; Geert Callewaert; H De Smedt; Noël Boens; Wim Dehaen; Ludwig Missiaen
Abstract. In almost all cells, cytosolic Ca2+ is a crucial intracellular messenger, regulating many cellular processes. In non-excitable as well as in some excitable cells, Ca2+ release from the intracellular stores into the cytoplasm is primarily initiated by the second messenger inositol 1,4,5-trisphosphate (IP3), which interacts with the IP3 receptor (IP3R), a tetrameric intracellular Ca2+-release channel. This review focuses on the pharmacological modulation of the various functionally important sub-domains of the IP3R, including the IP3-binding domain, calmodulin-binding sites, adenine nucleotide-binding sites and the sites for interaction for FK506-binding proteins and other regulators. We will particularly focus on the pharmacological tools that interfere with these domains and discuss their relative specificity for the IP3R, thereby indicating their potential usefulness for unraveling the complex functional regulation of the IP3R.
Cell Calcium | 2012
Djalila Mekahli; Eva Sammels; Tomas Luyten; Kirsten Welkenhuyzen; L.P.W.J. van den Heuvel; Elena Levtchenko; R. Gijsbers; Geert Bultynck; Jan B. Parys; H De Smedt; Ludwig Missiaen
Autosomal dominant polycystic kidney disease is caused by loss-of-function mutations in the PKD1 or PKD2 genes encoding respectively polycystin-1 and polycystin-2. Polycystin-2 stimulates the inositol trisphosphate (IP(3)) receptor (IP(3)R), a Ca(2+)-release channel in the endoplasmic reticulum (ER). The effect of ER-located polycystin-1 is less clear. Polycystin-1 has been reported both to stimulate and to inhibit the IP(3)R. We now studied the effect of polycystin-1 and of polycystin-2 on the IP(3)R activity under conditions where the cytosolic Ca(2+) concentration was kept constant and the reuptake of released Ca(2+) was prevented. We also studied the interdependence of the interaction of polycystin-1 and polycystin-2 with the IP(3)R. The experiments were done in conditionally immortalized human proximal-tubule epithelial cells in which one or both polycystins were knocked down using lentiviral vectors containing miRNA-based short hairpins. The Ca(2+) release was induced in plasma membrane-permeabilized cells by various IP(3) concentrations at a fixed Ca(2+) concentration under unidirectional (45)Ca(2+)-efflux conditions. We now report that knock down of polycystin-1 or of polycystin-2 inhibited the IP(3)-induced Ca(2+) release. The simultaneous presence of the two polycystins was required to fully amplify the IP(3)-induced Ca(2+) release, since the presence of polycystin-1 alone or of polycystin-2 alone did not result in an increased Ca(2+) release. These novel findings indicate that ER-located polycystin-1 and polycystin-2 operate as a functional complex. They are compatible with the view that loss-of-function mutations in PKD1 and in PKD2 both cause autosomal dominant polycystic kidney disease.