Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Dennis Tolley is active.

Publication


Featured researches published by H. Dennis Tolley.


Journal of the American Society for Mass Spectrometry | 2008

Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds

Jesse A. Contreras; Jacolin A. Murray; Samuel E. Tolley; Joseph L. Oliphant; H. Dennis Tolley; Stephen A. Lammert; Edgar D. Lee; Douglas W. Later; Milton L. Lee

A novel gas chromatograph-mass spectrometer (GC-MS) based on a miniature toroidal ion trap mass analyzer (TMS) and a low thermal mass GC is described. The TMS system has an effective mass/charge (m/z) range of 50–442 with mass resolution at full-width half-maximum (FWHM) of 0.55 at m/z 91 and 0.80 at m/z 222. A solid-phase microextraction (SPME) fiber mounted in a simple syringe-style holder is used for sample collection and introduction into a specially designed low thermal mass GC injection port. This portable GC-TMS system weighs <13 kg (28 lb), including batteries and helium carrier gas cartridge, and is totally self-contained within dimensions of 47×36×18 cm (18.5×14×7in.). System start-up takes about 3 min and sample analysis with library matching typically takes about 5 min, including time for column cool-down. Peak power consumption during sample analysis is about 80 W. Battery power and helium supply cartridges allow 50 and 100 consecutive analyses, respectively. Both can be easily replaced. An on-board library of target analytes is used to provide detection and identification of chemical compounds based on their characteristic retention times and mass spectra. The GC-TMS can detect 200 pg of methyl salicylate on-column. n-Butylbenzene and naphthalene can be detected at a concentration of 100 ppt in water from solid-phase microextraction (SPME) analysis of the headspace. The GC-TMS system has been designed to easily make measurements in a variety of complex and harsh environments.


Clinical Cancer Research | 2006

Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines

Christopher M. Lee; Christa B. Fuhrman; Vicente Planelles; Morgan R Peltier; David K. Gaffney; Andrew P. Soisson; Mark K. Dodson; H. Dennis Tolley; Christopher Lee Green; Karen Zempolich

Purpose: The phosphatidylinositol 3-kinase (PI3K) catalytic subunit is amplified in cervical cancers, implicating PI3K in cervical carcinogenesis. We evaluated the radiosensitizing effect of PI3K inhibition by LY294002 on clonogenic survival, growth characteristics, and gene expression in cervical cancer cell lines (HeLa and CaSki). Experimental Design: Cervical cancer cells were treated separately and concurrently with the PI3K inhibitor LY294002 (10 μmol/L) and radiation (2 Gy) with serial analysis of cell count, apoptosis, and flow cytometry. PI3K inhibition was assessed by protein analysis of phosphorylated Akt. Clonogenic assays were done with varying doses of radiation and LY294002 and varied time points of administration of LY294002 proximate to the radiation dose. Surviving fractions and dose modification factors (DMF) were calculated. Each experiment was done in triplicate and analyzed using ANOVA regression analysis and Dunnetts t Test. Microarray gene expression analysis was done on the HeLa cell line. Results: PI3K inhibition with LY294002 alone did not decrease cell survival. However, treatment with LY294002 significantly radiosensitized HeLa and CaSki cell lines with DMFs (1 log cell kill) of 1.95 and 1.37, respectively. Compared with post-irradiation, pretreatment produced more radiosensitization (P < 0.0001). DMFs were 2.2, 2.0, 2.0, and 1.2 for LY294002 added at 6, 2, and 0.5 hours before irradiation and 6 hours after irradiation, respectively. LY294002 pretreatment in irradiated HeLa cells led to altered gene expression. Conclusions: Although LY294002 alone did not produce cytotoxic effects, PI3K inhibition with LY294002 produced significant radiosensitization, showed significant time-dependent effects, increased apoptosis, and altered gene expression. These findings support future investigation of PI3K inhibitors in combination with radiation therapy for carcinoma of the cervix.


Journal of Chromatography A | 2012

Monolithic bed structure for capillary liquid chromatography.

Pankaj Aggarwal; H. Dennis Tolley; Milton L. Lee

Monolithic stationary phases show promise for LC as a result of their good permeability, ease of preparation and broad selectivity. Inorganic silica monoliths have been extensively studied and applied for separation of small molecules. The presence of a large number of through pores and small skeletal structure allows the chromatographic efficiencies of silica monoliths to be comparable to columns packed with 5 μm silica particles, at much lower back pressure. In comparison, organic polymeric monoliths have been mostly used for separation of bio-molecules; however, recently, applications are expanding to small molecules as well. Organic monoliths with high surface areas and fused morphology rather than conventional globular morphology have shown good performance for small molecule separations. Factors such as domain size, through-pore size and mesopore size of the monolithic structures have been found to govern the efficiency of monolithic columns. The structure and performance of monolithic columns are reviewed in comparison to particle packed columns. Studying and characterizing the bed structures of organic monolithic columns can provide great insights into their performance, and aid in structure-directed synthesis of new and improved monoliths.


Journal of Chromatography A | 2009

Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion-exchange capillary liquid chromatography of proteins.

Yun Li; Binghe Gu; H. Dennis Tolley; Milton L. Lee

Two novel polymeric monoliths for anion-exchange capillary liquid chromatography of proteins were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion-exchanger and quaternary amine as a strong anion-exchanger, respectively. An alternative weak anion-exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. Important physical and chromatographic properties of the synthesized monoliths were characterized. The dynamic binding capacities of the three monoliths (24 mg/mL, 56 mg/mL and 32 mg/mL of column volume, respectively) were comparable or superior to values that have been reported for various other monoliths. Chromatographic performance was also similar to that provided by a modified poly(GMA-ethylene glycol dimethacrylate) monolith. Separation of standard proteins was achieved under gradient elution conditions using these monolithic columns. Peak capacities of 34, 58 and 36 proteins were obtained with analysis times of 20-30 min. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, additional surface modifications were avoided and the PEGDA crosslinker helped to improve the biocompatibility of the monolithic backbone.


Journal of Chromatography A | 2011

Preparation of monoliths from single crosslinking monomers for reversed-phase capillary chromatography of small molecules

Yuanyuan Li; H. Dennis Tolley; Milton L. Lee

Highly cross-linked networks resulting from single crosslinking monomers were found to enhance the concentrations of mesopores in, and the surface areas of, polymeric monoliths. Four crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol=2 or 4) and pentaerythritol diacrylate monostearate (PDAM), were used to synthesize monolithic capillary columns for reversed phase liquid chromatography (RPLC) of small molecules. Tetrahydrofuran (THF) and decanol were chosen as good and poor porogenic solvents for BAEDA-2 and BAEDA-4 monoliths. For the formation of the BADMA monolith, THF was replaced with dimethylformamide (DMF) to improve the column reproducibility. Appropriate combinations of THF, isopropyl alcohol and an additional triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO porogen were found to be effective in forming rigid PDAM monoliths with the desired porosities. Selection of porogens for the BADMA and PDAM monoliths was investigated in further detail to provide more insight into porogen selection. Isocratic elution of alkyl benzenes at a flow rate of 0.3 μL/min was conducted for BADMA and PDAM monoliths. The peaks showed little tailing on both monoliths without addition of acid to the mobile phase. The column efficiency measured for pentylbenzene using the BADMA monolithic column was 60,208 plates/m (k=7.9). Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution. Optimized monoliths synthesized from all four crosslinking monomers showed high permeability, and demonstrated little swelling or shrinking in different polarity solvents. Column preparation was highly reproducible; relative standard deviation (RSD) values were less than 1.2% and 7.5% based on retention times and peak areas, respectively, of alkyl benzenes.


Journal of Chromatography A | 2010

Monoliths from poly(ethylene glycol) diacrylate and dimethacrylate for capillary hydrophobic interaction chromatography of proteins

Yuanyuan Li; H. Dennis Tolley; Milton L. Lee

Rigid monoliths were synthesized solely from poly(ethylene glycol) diacrylates (PEGDA) or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths by one-step UV-initiated polymerization. Methanol/ethyl ether and cyclohexanol/decanol were used as bi-porogen mixtures for the PEGDA and PEGDMA monoliths, respectively. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. For tri- and tetra-ethylene glycol diacrylates (i.e., PEGDA 258 and PEGDA 302), most combinations of methanol and ethyl ether were effective in forming monoliths, while for diacrylates containing longer chain lengths (i.e., PEGDA 575 and PEGDA 700), polymerization became more sensitive to the bi-porogen ratio. A similar tendency was also observed for PEGDMA monomers. Polymerization of monoliths was conducted at approximately 0 degrees C and room temperature, which produced significant differences in monolith morphology and permeability. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution in hydrophobic interaction chromatography (HIC). Detailed study of these monoliths demonstrated that chromatographic performance was not affected by changing the ratios of the two porogens, but resulted in almost identical retention times and comparable peak capacities. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. Mass recoveries for test proteins were found to be greater than 90, indicating its excellent biocompatibility. All monoliths demonstrated nearly no swelling or shrinking in different polarity solvents, and most of them could be stored dry, indicating excellent stability due to their highly crosslinked networks. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The relative standard deviation (RSD) values based on retention times of retained proteins were all within 2.2%, and in most cases, less than 1.2%. The RSD values based on peak areas were within 9.5%, and in most cases, less than 7.0%. The single-monomer synthesis approach clearly improves column-to-column reproducibility.


Analytical Chemistry | 2009

Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides.

Yun Li; H. Dennis Tolley; Milton L. Lee

Protein-resistant poly(ethylene glycol methyl ether acrylate-co-polyethylene glycol diacrylate) monoliths were prepared in 150 microm i.d. capillaries using novel binary porogenic solvents consisting of ethyl ether and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO copolymer with molecular weights (MWs) from 2700 to 5800. The effects of the MWs and concentrations of these surfactants in the porogenic solvent mixture on the pore properties of the resultant monoliths were investigated. Several of the monoliths showed improvements in protein and peptide separations over an extended MW range compared to monoliths synthesized using non-surfactant porogens (i.e., low MW organic liquids). The pore size distributions were examined using inverse size-exclusion chromatography (ISEC) of a select series of proteins and peptides covering a wide MW range. It was found that the best monolith had relatively large fractions of micropores (<2 nm, 11.9%) and mesopores in the range from 2.8 to 15.7 nm (8.5%), which are important for size-exclusion separation of peptides and proteins, respectively. The new monoliths possessed high mechanical rigidity that enabled them to withstand pressures up to approximately 4000 psi.


Journal of Separation Science | 2013

Organic monoliths for high‐performance reversed‐phase liquid chromatography

Kun Liu; Pankaj Aggarwal; John S. Lawson; H. Dennis Tolley; Milton L. Lee

RPLC is the most common mode of LC. It is widely used for separations of both small and large molecules. Monolithic columns, which are currently under intensive study by many groups, have the potential of becoming attractive alternatives to particle-packed columns. They are generally easier and faster to fabricate, and they demonstrate a lower pressure drop, less nonspecific adsorption, and richer chemistry (in the case of organic polymer monoliths) for providing broad selectivity. Silica monoliths, as is also true for columns packed with silica particles, are best applied to small-molecule separations. Organic polymer monoliths, on the other hand, have shown advantages for large-molecule separations. Recently, improvements in organic monoliths have led to efficiencies for small molecules that are approaching and even surpassing 100,000 plates/m. While this performance is still far short of what is currently available using modern small particles and silica monoliths in RPLC, steady progress is being made. This review describes recent developments in the synthesis and performance of organic polymer RPLC monoliths, and identifies areas where additional work is needed to significantly improve their performance for both small- and large-molecule separations.


Journal of Chromatography A | 2010

Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins.

Xin Chen; H. Dennis Tolley; Milton L. Lee

Two different monoliths, both containing phosphoric acid functional groups and polyethylene glycol (PEG) functionalities were synthesized for cation-exchange chromatography of peptides and proteins. Phosphoric acid 2-hydroxyethyl methacrylate (PAHEMA) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) were reacted with polyethylene glycol diacrylate (PEGDA) and polyethylene glycol acrylate (PEGA), respectively, in 75-mum i.d. UV-transparent fused-silica capillaries by photo-initiated polymerization. The hydrophobicities of the monoliths were evaluated using propyl paraben under reversed-phase conditions and synthetic peptides under ion-exchange conditions. The resulting monoliths exhibited lower hydrophobicities than strong cation-exchange monoliths previously reported using PEGDA as cross-linker. Dynamic binding capacities of 31.2 and 269mg/mL were measured for the PAHEMA-PEGDA and BMEP-PEGA monoliths, respectively. Synthetic peptides were eluted from both monoliths in 15min without addition of acetonitrile to the mobile phase. Peak capacities of 50 and 31 were measured for peptides and proteins, respectively, using a PAHEMA-PEGDA monolith. The BMEP-PEGA monolith showed negligible hydrophobicity. A peak capacity of 31 was measured for the BMEP-PEGA monolith when a 20-min salt gradient rate was used to separate proteins. The effects of functional group concentration, mobile phase pH, salt gradient rate, and hydrophobicity on the retention of analytes were investigated. Good run-to-run [relative standard deviation (RSD)<1.99%] and column-to-column (RSD<5.64) reproducibilities were achieved. The performance of the monoliths in ion-exchange separation of peptides and proteins was superior to other polymeric monolithic columns reported previously when organic solvents were not added to the mobile phase.


Journal of Aging and Health | 1991

Rectangularization of the survival curve: implications of an ill-posed question.

Kenneth G. Manton; H. Dennis Tolley

There has been considerable interest in the question of whether the human survival curve is becoming more rectangular as life expectancy in developed countries increases. However, despite the intuitive appeal of the rectangularization concept it has not been translated into a formally stated hypothesis about the shape of the human survival curve. This article examines how the hypothesis of rectangularization can be formally stated and the implications of that formalization for research on health and functional changes at later ages.

Collaboration


Dive into the H. Dennis Tolley's collaboration.

Top Co-Authors

Avatar

Milton L. Lee

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Lawson

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonika Sharma

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge