Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Dole is active.

Publication


Featured researches published by H. Dole.


Astrophysical Journal Supplement Series | 2004

THE MULTIBAND IMAGING PHOTOMETER FOR SPITZER (MIPS)

G. H. Rieke; Erick T. Young; C. W. Engelbracht; D. M. Kelly; Frank J. Low; E. E. Haller; Jeffrey W. Beeman; Karl D. Gordon; J. A. Stansberry; Karl Anthony Misselt; James Cadien; J. E. Morrison; Gil Rivlis; William B. Latter; Alberto Noriega-Crespo; Deborah Lynne Padgett; Karl R. Stapelfeldt; Dean C. Hines; E. Egami; James Muzerolle; A. Alonso-Herrero; M. Blaylock; H. Dole; Joannah L. Hinz; Casey Papovich; P. G. Pérez-González; Paul S. Smith; K. Y. L. Su; Lee Bennett; D. T. Frayer

The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability for the mission in imaging bands at 24, 70, and 160 ?m and measurements of spectral energy distributions between 52 and 100 ?m at a spectral resolution of about 7%. By using true detector arrays in each band, it provides both critical sampling of the Spitzer point-spread function and relatively large imaging fields of view, allowing for substantial advances in sensitivity, angular resolution, and efficiency of areal coverage compared with previous space far-infrared capabilities. The 24 ?m array has excellent photometric properties, and measurements with rms relative errors of about 1% can be obtained. The two longer-wavelength arrays use detectors with poor photometric stability, but a system of onboard stimulators used for relative calibration, combined with a unique data pipeline, produce good photometry with rms relative errors of less than 10%.


Publications of the Astronomical Society of the Pacific | 2003

SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey

Carol J. Lonsdale; Harding E. Smith; Michael Rowan-Robinson; Jason A. Surace; D. L. Shupe; Cong Xu; S. J. Oliver; Deborah Lynne Padgett; F. Fang; Tim Conrow; A. Franceschini; Nick Gautier; Matthew Joseph Griffin; Perry B. Hacking; Frank J. Masci; G. Morrison; Joanne O’Linger; Frazer N. Owen; I. Perez-Fournon; M. Pierre; Gordon J. Stacey; Sandra Castro; Maria del Carmen Polletta; D. Farrah; T. H. Jarrett; D. T. Frayer; Brian D. Siana; T. Babbedge; Simon Dye; M. Fox

The largest of the SIRTF Legacy programs, SWIRE will survey 65 sq. deg. in seven high latitude fields selected to be the best wide low-extinction windows into the extragalactic sky. SWIRE will detect millions of spheroids, disks and starburst galaxies to z>3 and will map L* and brighter systems on scales up to 150 Mpc at z∼0.5–1. It will also detect ∼104 low extinction AGN and large numbers of obscured AGN. An extensive program of complementary observations is underway. The data are non-proprietary and will be made available beginning in Spring 2004.


The Astrophysical Journal | 2005

SPITZER VIEW ON THE EVOLUTION OF STAR-FORMING GALAXIES FROM z = 0 TO z ~ 3

P. G. Pérez-González; G. H. Rieke; E. Egami; A. Alonso-Herrero; H. Dole; Casey Papovich; M. Blaylock; Jessica Jones; Marcia J. Rieke; Jane R. Rigby; Pauline Barmby; Giovanni G. Fazio; Jia-Sheng Huang; Christopher D. Martin

We use a 24 ?m-selected sample containing more than 8000 sources to study the evolution of star-forming galaxies in the redshift range from z = 0 to z ~ 3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z = 0.6-1.0 (the location of the peak being affected by cosmic variance) and decays monotonically from z ~ 1 to z ~ 3. We have fitted infrared luminosity functions in several redshift bins in the range 0 1011 L?) to the total SFR density increases steadily from z ~ 0 up to z ~ 2.5, forming at least half of the newly born stars by z ~ 1.5. Ultraluminous infrared galaxies (LTIR > 1012 L?) play a rapidly increasing role for z 1.3.


Monthly Notices of the Royal Astronomical Society | 2003

Modelling infrared galaxy evolution using a phenomenological approach

Guilaine Lagache; H. Dole; Jean-Loup Puget

To characterize the cosmological evolution of the sources contributing to the infrared extragalactic background, we have developed a phenomenological model that constrains in a simple way the evolution of the galaxy luminosity function with redshift, and fits all the existing source counts and redshift distributions, cosmic infrared background intensity and fluctuation observations, from the mid-infrared to the submillimetre range. The model is based on template spectra of starburst and normal galaxies, and on the local infrared luminosity function. Although the cosmic infrared background can be modelled with very different luminosity functions as long as the radiation production with redshift is the right one, the number counts and the anisotropies of the unresolved background imply that the luminosity function must change dramatically with redshift, with a rapid evolution of the high-luminosity sources (L > 3 × 10 11 L� ) from z = 0t oz = 1, which then stay rather constant up to redshift z = 5. The derived evolution of the infrared luminosity function may be linked to a bimodal star formation process: one associated with the quiescent and passive phase of the galaxy evolution, and one associated with the starburst phase, triggered by merging and interactions. The latter dominates the infrared and submillimetre output energy of the Universe. The model is intended as a convenient tool to plan further observations, as illustrated through predictions for Herschel, Planck and ALMA observations. Our model predictions for given wavelengths, together with some useful routines, are available for general use.


The Astrophysical Journal | 2006

Infrared power-law galaxies in the chandra deep field-south: Active galactic nuclei and ultraluminous infrared galaxies

A. Alonso-Herrero; P. G. Pérez-González; D. M. Alexander; G. H. Rieke; D. Rigopoulou; Pauline Barmby; Casey Papovich; Jane R. Rigby; F. E. Bauer; W. N. Brandt; E. Egami; Steven P. Willner; H. Dole; Jia-Sheng Huang

We investigate the nature of a sample of 92 Spitzer MIPS 24 � m–selected galaxies in the CDF-S, showing powerlaw–like emission in the Spitzer IRAC 3.6–8 � m bands. The main goal is to determine whether the galaxies not detectedinX-rays (47%ofthesample)arepartofthehypotheticalpopulationofobscuredAGNsnotdetectedevenin deep X-ray surveys. The majority of the IR power-law galaxies are ULIRGs at z > 1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical-to-IR SEDs of the X-ray–detected galaxies are almost equally divided between aBLAGN SED class (similar to anopticallyselected QSO) and an NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRGs (e.g., Mrk 231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter and possibly more obscured. Moreover, the IR power-law galaxies have SEDs significantly different from those of high-z (zsp > 1) IR (24 � m) selected and optically bright (VVDS IAB � 24) star-forming galaxies whoseSEDsshow averyprominent stellar bumpat1.6 � m.ThegalaxiesdetectedinX-rays have2–8keVrest-frame luminosities typical ofAGNs. Thegalaxies notdetectedinX-rayshave global X-ray–to–mid-IR SED properties that make them good candidates to contain IR-bright X-ray–absorbed AGNs. If all these sources are actually obscured AGNs, we would observe a ratio of obscured to unobscured 24 � m–detected AGNs of 2:1, whereas models predict a ratio of up to 3:1. Additional studies using Spitzer to detect X-ray–quiet AGNs are likely to find more such obscured sources. Subject headings: galaxies: active — galaxies: high-redshift — infrared: galaxies — X-rays: galaxies Online material: color figuresWe investigate the nature of a sample of 92 Spitzer/MIPS 24 μm selected galaxies in the CDFS, showing power law-like emission in the Spitzer/IRAC 3.6– 8μm bands. The main goal is to determine whether the galaxies not detected in X-rays (47% of the sample) are part of the hypothetical population of obscured AGN not detected even in deep X-ray surveys. The majority of the IR powerlaw galaxies are ULIRGs at z > 1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical to IR spectral energy distributions (SEDs) of the X-ray detected galaxies are almost equally divided between a BLAGN SED class (similar to an optically selected QSO) and a NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRG galaxies (e.g., Mrk 231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter, and possibly more obscured. Moreover, the IR powerlaw galaxies have SEDs significantly different from those of high-z (zsp > 1) IR (24 μm) selected and optically bright (VVDS IAB ≤ 24) star-forming galaxies Departamento de Astrof́ısica Molecular e Infrarroja, Instituto de Estructura de la Materia, CSIC, E28006 Madrid, Spain; e-mail: [email protected] Steward Observatory, The University of Arizona, 933 N. Cherry, Tucson, AZ 85721 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK Department of Astrophysics, Oxford University, Keble Rd, Oxford, OX1 3RH, UK Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 Columbia Astrophysics Laboratory, Columbia University Pupin Laboratories, 550 W. 120th St., Rm 1418, NY, 10027 Department of Astronomy and Astrophysics; The Pennsylvania State University; 525 Davey Lab; University Park, PA 16802 Institut d’Astrophysique Spatiale, bât 121, Université Paris Sud, F-91405 Orsay Cedex, France


Astrophysical Journal Supplement Series | 2004

The 24 Micron Source Counts in Deep Spitzer Space Telescope Surveys

Casey Papovich; H. Dole; E. Egami; P. G. Pérez-González; A. Alonso-Herrero; Lei Bai; Charles A. Beichman; M. Blaylock; C. W. Engelbracht; Karl D. Gordon; Dean C. Hines; Karl Anthony Misselt; J. E. Morrison; Jeremy R. Mould; James Muzerolle; G. Neugebauer; P. L. Richards; G. H. Rieke; Marcia J. Rieke; Jane R. Rigby; Kate Su; Erick T. Young

Galaxy source counts in the infrared provide strong constraints on the evolution of the bolometric energy output from distant galaxy populations. We present the results from deep 24 μm imaging from Spitzer surveys, which include ≈5 × 10^4 sources to an 80% completeness of ≃ 60 μJy. The 24 μm counts rapidly rise at near-Euclidean rates down to 5 mJy, increase with a super-Euclidean rate between 0.4 and 4 mJy, and converge below ~0.3 mJy. The 24 μm counts exceed expectations from nonevolving models by a factor of ≳10 at S_ν ~ 0.1 mJy. The peak in the differential number counts corresponds to a population of faint sources that is not expected from predictions based on 15 μm counts from the Infrared Space Observatory. We argue that this implies the existence of a previously undetected population of infrared-luminous galaxies at z ~ 1-3. Integrating the counts to 60 μJy, we derive a lower limit on the 24 μm background intensity of 1.9 ± 0.6 nW m^(-2) sr^(-1) of which the majority (~60%) stems from sources fainter than 0.4 mJy. Extrapolating to fainter flux densities, sources below 60 μJy contribute 0.8^(+0.9)_(-0.4) nW m^(-2) sr^(-1) to the background, which provides an estimate of the total 24 μm background of 2.7^(+1.1)_(-0.7) nW m^(-2) sr^(-1).


Annual Review of Astronomy and Astrophysics | 2005

Dusty Infrared Galaxies: Sources of the Cosmic Infrared Background

Guilaine Lagache; Jean-Loup Puget; H. Dole

▪ AbstractThe discovery of the Cosmic Infrared Background (CIB) in 1996, together with recent cosmological surveys from the mid-infrared to the millimeter, have revolutionized our view of star formation at high redshifts. It has become clear, in the last decade, that a population of galaxies that radiate most of their power in the far-infrared (the so-called infrared galaxies) contributes an important part of the whole galaxy build-up in the Universe. Since 1996, detailed (and often painful) investigations of the high-redshift infrared galaxies have resulted in the spectacular progress covered in this review. We outline the nature of the sources of the CIB, including their star-formation rate, stellar and total mass, morphology, metallicity, and clustering properties. We discuss their contribution to the stellar content of the Universe and their origin in the framework of the hierarchical growth of structures. We finally discuss open questions for a scenario of their evolution up to the present-day galaxies.


Publications of the Astronomical Society of the Pacific | 2007

Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging

Karl D. Gordon; C. W. Engelbracht; D. Fadda; J. A. Stansberry; Stefanie Wachter; D. T. Frayer; G. H. Rieke; Alberto Noriega-Crespo; William B. Latter; Erick T. Young; G. Neugebauer; Zoltan Balog; Jeffrey W. Beeman; H. Dole; E. Egami; E. E. Haller; Dean C. Hines; D. M. Kelly; Francine Roxanne Marleau; Karl Anthony Misselt; J. E. Morrison; P. G. Pérez-González; Jeonghee Rho; Wm. A. Wheaton

The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 μm coarse‐and fine‐scale imaging modes are presented based on over 2.5 yr of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long‐term detector transients. Point‐spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse‐scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^(−1), and with spectral types from B to M. The coarse‐scale calibration is 702 ± 35 MJy sr^(−1) MIPS70^(−1) (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 μm coarse‐ and fine‐scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all timescales probed. The preliminary fine‐scale calibration factor is 2894 ± 294 MJy sr^(−1) MIPS70F^(−1) (10% uncertainty) based on 10 stars. The uncertainties in the coarse‐ and fine‐scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5 σ, 500 s sensitivity of the coarse‐scale observations is 6–8 mJy. This work shows that the MIPS 70 μm array produces accurate, well‐calibrated photometry and validates the MIPS 70 μm operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.


Astrophysical Journal Supplement Series | 2004

Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z 2

Guilaine Lagache; H. Dole; Jean-Loup Puget; P. G. Pérez-González; G. H. Rieke; Casey Papovich; E. Egami; A. Alonso-Herrero; C. W. Engelbracht; Karl D. Gordon; Karl Anthony Misselt; J. E. Morrison

We present an updated phenomenological galaxy evolution model to fit the Spitzer 24, 70, and 160 μm number counts, as well as all the previous mid- and far-infrared observations. Only a minor change of the comoving luminosity density distribution in the previous model (Lagache, Dole, & Puget), combined with a slight modification of the starburst template spectra mainly between 12 and 30 μm, are required to fit all the data available. We show that the peak in the Spitzer Multiband Imaging Photometer 24 μm counts is dominated by galaxies with redshift between 1 and 2, with a nonnegligible contribution from the z ≥ 2 galaxies (~30% at S = 0.2 mJy). The very close agreement between the model and number counts at 15 and 24 μm strikingly implies that (1) the polycyclic aromatic hydrocarbon features remain prominent in the redshift band 0.5-2.5 and (2) the IR energy output has to be dominated by ~3 × 1011 L⊙ to ~3 × 1012 L⊙ galaxies from redshift 0.5 to 2.5. Combining Spitzer with Infrared Space Observatory deep cosmological surveys gives for the first time an unbiased view of the infrared universe from z = 0 to 2.5.


Astronomy and Astrophysics | 2010

A lower-limit flux for the extragalactic background light

T. Kneiske; H. Dole

Context. The extragalactic background light (EBL) contains information about the evolution of galaxies from very early times up to the present. The spectral energy distribution is not known accurately, especially in the near- and mid-infrared range. Upper limits and absolute measurements come from direct observations which might be be polluted by foreground emission, while indirect upper limits can also be set by observations of high energy gamma-ray sources. Galaxy number counts integrations of observable galaxies, missing possible faint sources, give strict lower limits. Aims. A model is constructed, which reproduces the EBL lower limit flux. This model can be used for a guaranteed minimum correction of observed spectra of extragalactic gamma-ray sources for extragalactic absorption. Methods. A forward evolution model for the metagalactic radiation field is used to fit recent observations of satelites like Spitzer, ISO, Hubble and GALEX. The model is applied to calculate the Fazio-Stecker relation, and to compute the absorption factor at different redshifts and corrected blazar spectra. Results. A strict lower-limit flux for the evolving extragalactic background light (and in particular the cosmic infrared background) has been calculated up to a redshift of five. The computed flux is below the existing upper limits from direct observations, and agrees with all existing limits derived from very-high energy gamma-ray observations. The corrected spectra still agree with simple theoretical predictions. The derived strict lower-limit EBL flux is very close to the upper limits from gamma-ray observations. This is true for the present day EBL, but also for the diffuse flux at higher redshift. Conclusions. If future detections of high redshift gamma-ray sources require a lower EBL flux than derived here, the physics assumptions used to derive the upper limits have to be revised. The lower-limit EBL model is not only needed for absorption features in active galactic nuclei and other gamma-ray sources, but is also essential when alternative particle processes are tested, which could prevent the high energy gamma-rays from being absorbed. It can also be used for a guaranteed interaction of cosmic-ray particles. The model is available online.

Collaboration


Dive into the H. Dole's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Egami

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

P. G. Pérez-González

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl D. Gordon

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Alonso-Herrero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge