Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Donald Gage is active.

Publication


Featured researches published by H. Donald Gage.


Nature Neuroscience | 2002

Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration

Drake Morgan; Kathleen A. Grant; H. Donald Gage; Robert H. Mach; Jay R. Kaplan; Osric Prioleau; Susan H. Nader; Nancy Buchheimer; Richard L. Ehrenkaufer; Michael A. Nader

Disruption of the dopaminergic system has been implicated in the etiology of many pathological conditions, including drug addiction. Here we used positron emission tomography (PET) imaging to study brain dopaminergic function in individually housed and in socially housed cynomolgus macaques (n = 20). Whereas the monkeys did not differ during individual housing, social housing increased the amount or availability of dopamine D2 receptors in dominant monkeys and produced no change in subordinate monkeys. These neurobiological changes had an important behavioral influence as demonstrated by the finding that cocaine functioned as a reinforcer in subordinate but not dominant monkeys. These data demonstrate that alterations in an organisms environment can produce profound biological changes that have important behavioral associations, including vulnerability to cocaine addiction.


Nature Neuroscience | 2006

PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys

Michael A. Nader; Drake Morgan; H. Donald Gage; Susan H. Nader; Tonya L Calhoun; Nancy Buchheimer; Richard L. Ehrenkaufer; Robert H. Mach

Dopamine neurotransmission is associated with high susceptibility to cocaine abuse. Positron emission tomography was used in 12 rhesus macaques to determine if dopamine D2 receptor availability was associated with the rate of cocaine reinforcement, and to study changes in brain dopaminergic function during maintenance of and abstinence from cocaine. Baseline D2 receptor availability was negatively correlated with rates of cocaine self-administration. D2 receptor availability decreased by 15–20% within 1 week of initiating self-administration and remained reduced by ∼20% during 1 year of exposure. Long-term reductions in D2 receptor availability were observed, with decreases persisting for up to 1 year of abstinence in some monkeys. These data provide evidence for a predisposition to self-administer cocaine based on D2 receptor availability, and demonstrate that the brain dopamine system responds rapidly following cocaine exposure. Individual differences in the rate of recovery of D2 receptor function during abstinence were noted.


Anesthesia & Analgesia | 2002

Dexmedetomidine-Induced Sedation in Volunteers Decreases Regional and Global Cerebral Blood Flow

Richard C. Prielipp; Michael H. Wall; Joseph R. Tobin; Leanne Groban; Mark A. Cannon; Frederic H. Fahey; H. Donald Gage; Robert L. James; Judy Bennett; John F. Butterworth

Dexmedetomidine is a selective &agr;2-agonist approved for sedation of critically ill patients. There is little information on the effects of dexmedetomidine on cerebral blood flow (CBF) or intracranial hemodynamics, despite considerable other pharmacodynamic data. We hypothesized that therapeutic doses of dexmedetomidine would decrease CBF. Therefore, nine supine volunteers, aged 24–48 yr, were infused with a 1 &mgr;g/kg IV loading dose of dexmedetomidine, followed by an infusion of 0.2 &mgr;g · kg−1 · h−1 (LOW DEX) and 0.6 &mgr;g · kg−1 · h−1 (HIGH DEX). Hemodynamic and CBF (via positron emission tomography) measurements were determined at each experimental time point. Dexmedetomidine decreased both cardiac output and heart rate during and 30 min after drug administration. Blood pressure decreased from 12% to 16% during and after the dexmedetomidine administration. Global CBF was decreased significantly from baseline (91 mL · 100 g−1 · min−1 [95% confidence interval, 72–114] to 64 mL · 100 g−1 · min−1 [51–81] LOW DEX and 61 mL · 100 g−1 · min−1 [48–76] HIGH DEX). This decrease in CBF remained constant for at least 30 min after the dexmedetomidine infusion was discontinued, despite the plasma dexmedetomidine concentration decreasing 40% during this same time period (628 pg/mL [524–732] to 380 pg/mL [253–507]).


Neuropsychopharmacology | 2009

Effect of Menstrual Cycle Phase on Dopamine D2 Receptor Availability in Female Cynomolgus Monkeys

Paul W. Czoty; Natallia V. Riddick; H. Donald Gage; Mikki Sandridge; Susan H. Nader; Sudha Garg; Michael C. Bounds; Pradeep K. Garg; Michael A. Nader

Sex differences have been reported in a variety of affective and neurodegenerative disorders that involve dysfunctional dopamine (DA) neurotransmission. In addition, there is evidence for differences in sensitivity to the abuse-related effects of psychostimulants across the menstrual cycle which may result from effects of ovarian hormones on DA function. The goal of the present study was to extend previous work examining menstrual cycle-related changes in DA D2 receptor availability in humans to drug-naive female cynomolgus monkeys (n=7) using the selective D2-like receptor ligand [18F]fluoroclebopride (FCP) and a high-resolution microPET P4 scanner. Menstrual cycle phase was characterized by daily vaginal swabs and measurements of serum progesterone levels. PET studies were conducted once during the luteal phase and once during the follicular phase. Regions of interest in the caudate nucleus, putamen, and cerebellum were defined on coregistered MRIs. Distribution volumes were calculated for FCP in each structure and the distribution volume ratio (DVR) for both brain regions relative to the cerebellum was used as a measure of D2 receptor availability. FCP DVRs were significantly higher in the luteal phase compared to the follicular phase in both the caudate nucleus (11.7% difference, p=0.02) and putamen (11.6% difference, p=0.03). These findings extend earlier work in humans and suggest that changes in DA receptor availability may be involved in the variation in symptoms of various neuropsychiatric disorders across the menstrual cycle, including differences in sensitivity to the abuse-related effects of stimulants.


Synapse | 1997

Imaging of cholinergic terminals using the radiotracer [18F](+)-4-fluorobenzyltrozamicol: In vitro binding studies and positron emission tomography studies in nonhuman primates

Robert H. Mach; Mary Lou Voytko; Richard L. Ehrenkaufer; Michael A. Nader; Joseph R. Tobin; Simon M. N. Efange; Stanley M. Parsons; H. Donald Gage; Cynthia R. Smith; Thomas E. Morton

The goal of the present set of studies was to characterize the in vitro binding properties and in vivo tissue kinetics for the vesicular acetylcholine transporter (VAcChT) radiotracer, [18F](+)‐4‐fluorobenzyltrozamicol ([18F](+)‐FBT). In vitro binding studies were conducted in order to determine the affinity of the (+)‐ and (−)‐ stereoisomers of FBT for the VAcChT as well as sigma (σ2 and σ2) receptors. (+)‐FBT was found to have a high affinity (Ki = 0.22 nM) for the VAcChT and lower affinities for σ1 (21.6 nM) and σ2 (35.9 nM) receptors, whereas (−)‐FBT had similar affinities for the VAcChT and σ1 receptors (∼20 nM) and a lower affinity for σ2 (110 nM) receptors. PET imaging studies were conducted in rhesus monkeys (n = 3) with [18F](+)‐FBT. [18F](+)‐FBT was found to have a high accumulation and slow rate of washout from the basal ganglia, which is consistent with the labeling of cholinergic interneurons in this brain region. [18F](+)‐FBT also displayed reversible binding kinetics during the 3 h time course of PET and produced radiolabeled metabolites that did not cross the blood‐brain barrier. The results from the current in vitro and in vivo studies indicate that [18F](+)‐FBT is a promising ligand for studying cholinergic terminal density, with PET, via the VAcChT. Synapse 25:368–380, 1997.


Neuropsychopharmacology | 2008

Effects of Cocaine and MDMA Self-Administration on Serotonin Transporter Availability in Monkeys

Matthew L. Banks; Paul W. Czoty; H. Donald Gage; Michael C. Bounds; Pradeep K. Garg; Sudha Garg; Michael A. Nader

Although serotonin (5-HT) can interact with dopamine (DA) systems to modulate the subjective and reinforcing effects of psychostimulants such as cocaine and 3,4-methyldioxymethamphetamine (MDMA, ecstasy), the long-term effects of exposure to psychostimulants on brain 5-HT systems are not well characterized. The present study assessed 5-HT transporter (SERT) availability using positron emission tomography (PET) in rhesus monkeys with the SERT-specific radioligand [11C]3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile (DASB). SERT availability was assessed in regions of interest including the caudate nucleus, putamen, anterior cingulate cortex, and cerebellum. [11C]DASB distribution volume ratios (DVRs) were calculated using the cerebellum as the reference region. DVRs were calculated in control monkeys and in cocaine or MDMA self-administering monkeys approximately 24 h after the last self-administration (SA) session. SERT availability did not differ between monkeys with a history of MDMA SA and control monkeys in any region examined. In contrast, monkeys with a history of cocaine SA showed significantly higher levels of SERT availability in the caudate nucleus and putamen compared to control subjects. These results suggest that chronic SA of cocaine, but not MDMA, leads to alterations in serotonergic function in brain areas relevant to drug abuse. The higher level of SERT availability in cocaine-experienced monkeys may lead to a reduced inhibitory tone of 5-HT on the DA system, which may explain, in part, differences in the abuse liability between cocaine and MDMA.


Biological Psychiatry | 2012

Social Dominance in Female Monkeys: Dopamine Receptor Function and Cocaine Reinforcement

Michael A. Nader; Susan H. Nader; Paul W. Czoty; Natallia V. Riddick; H. Donald Gage; Robert W. Gould; Brandi L. Blaylock; Jay R. Kaplan; Pradeep K. Garg; Huw M. L. Davies; Daniel Morton; Sudha Garg; Beth A. Reboussin

BACKGROUND Brain imaging and behavioral studies suggest an inverse relationship between dopamine (DA) D2/D3 receptors and vulnerability to cocaine abuse, although most research has used males. For example, male monkeys that become dominant in a social group have significant elevations in D2/D3 receptor availability and are less vulnerable to cocaine reinforcement. METHODS DA D2/D3 receptor availability was assessed in female cynomolgus monkeys (n = 16) with positron emission tomography (PET) while they were individually housed, 3 months after stable social hierarchies had formed, and again when individually housed. In addition, PET was used to examine changes in dopamine transporter (DAT) availability after social hierarchy formation. After imaging studies were complete, monkeys received implantation with indwelling intravenous catheters and self-administered cocaine (.001-.1 mg/kg/injection) under a fixed-ratio 30 schedule of reinforcement. Acquisition of cocaine reinforcement occurred when response rates were significantly higher than when saline was self-administered. RESULTS Neither DAT nor D2/D3 receptor availability in the caudate nucleus and putamen was predictive of social rank, but both significantly changed after formation of social hierarchies. DA D2/D3 receptor availability significantly increased in females that became dominant, whereas DAT availability decreased in subordinate females. Dominant female monkeys acquired cocaine reinforcement at significantly lower doses than subordinate monkeys. CONCLUSIONS The relationship between D2/D3 receptor availability and vulnerability to cocaine reinforcement seems, on the basis of these findings, opposite in females and males. These data indicate that the social environment profoundly affects the DA system but does so in ways that have different functional consequences for females than for males.


Neuropsychopharmacology | 2012

Chronic treatment with extended release methylphenidate does not alter dopamine systems or increase vulnerability for cocaine self-administration: a study in nonhuman primates.

Kathryn E Gill; Peter J. Pierre; James B. Daunais; Allyson J. Bennett; H. Donald Gage; James M Swanson; Michael A. Nader; Linda J. Porrino

Despite the widespread use of stimulant medications for the treatment of attention deficit hyperactivity disorder, few studies have addressed their long-term effects on the developing brain or susceptibility to drug use in adolescence. Here, we determined the effects of chronic methylphenidate (MPH) treatment on brain dopamine (DA) systems, developmental milestones, and later vulnerability to substance abuse in juvenile nonhuman primates. Male rhesus monkeys (approximately 30 months old) were treated daily with either a sustained release formulation of MPH or placebo (N=8 per group). Doses were titrated to achieve initial drug blood serum levels within the therapeutic range in children and adjusted throughout the study to maintain target levels. Growth, including measures of crown-rump length and weight, was assessed before and after 1 year of treatment and after 3–5 months washout. In addition, positron emission tomography scans were performed to quantify binding availability of D2/D3 receptors and dopamine transporters (DATs). Distribution volume ratios were calculated to quantify binding of [18F]fluoroclebopride (DA D2/D3) and [18F]-(+)-N-(4-fluorobenzyl)-2β-propanoyl-3β-(4-chlorophenyl)tropane (DAT). Chronic MPH did not differentially alter the course of weight gain or other measures of growth, nor did it influence DAT or D2/D3 receptor availability after 1 year of treatment. However, after washout, the D2/D3 receptor availability of MPH-treated animals did not continue to decline at the same rate as control animals. Acquisition of intravenous cocaine self-administration was examined by first substituting saline for food reinforcement and then cocaine doses (0.001–0.1 mg/kg per injection) in ascending order. Each dose was available for at least five consecutive sessions. The lowest dose of cocaine that maintained response rates significantly higher than saline-contingent rates was operationally defined as acquisition of cocaine reinforcement. There were no differences in rates of acquisition, overall response rates, or cocaine intake as a function of cocaine dose between groups. In an animal model that closely mimics human development; chronic treatment with therapeutic doses of sustained release MPH did not have a significant influence on the regulation of DATs or D2/D3 receptors, or on standard measures of growth. Furthermore, this treatment regimen and subsequent drug washout did not have an impact on vulnerability to cocaine abuse.


Neuropsychopharmacology | 1999

PET imaging of dopamine D2 receptors with [18F]fluoroclebopride in monkeys: effects of isoflurane- and ketamine-induced anesthesia.

Michael A. Nader; Kathleen A. Grant; H. Donald Gage; Richard L. Ehrenkaufer; Jay R. Kaplan; Robert H. Mach

The purpose of the present study was to determine whether positron emission tomography (PET) studies in monkeys with the dopamine (DA) D2 receptor ligand [18F]fluoroclebopride (FCP) would be significantly influenced by anesthetic induction with isoflurane (∼5.0%) compared to induction with 10 mg/kg ketamine. Five experimentally-naive adult male cynomolgus monkeys (Macaca fascicularis) were trained to sit calmly in a primate restraint chair. Before the first PET scan, each monkey was anesthetized, by mask, with isoflurane. After complete sedation, the monkey was intubated and anesthesia was maintained throughout the PET study by isoflurane (∼1.5%). At least 1 month later, a second PET study was conducted in which anesthesia was induced with ketamine and maintained by isoflurane (∼1.5%). Irrespective of induction anesthetic, there was a high uptake of [18F]FCP and a linear rate of washout from the basal ganglia for all monkeys. There were also no differences in time to peak uptake (∼25 min), in clearance half-life (t1/2 = 140–164 min) or in D2 binding (distribution volume ratios of 2.48 vs. 2.50). These results indicate that induction anesthetic did not differentially affect D2 binding of [18F]FCP in monkeys. Furthermore, the low variability between studies indicates that [18F]FCP is an excellent ligand for longitudinal studies of D2 receptors in nonhuman primates.


Biological Psychiatry | 2012

Effects of Chronic Cocaine Self-Administration on Cognition and Cerebral Glucose Utilization in Rhesus Monkeys

Robert W. Gould; H. Donald Gage; Michael A. Nader

BACKGROUND Chronic cocaine use is associated with neurobiological and cognitive deficits that persist into abstinence, hindering success of behavioral treatment strategies and perhaps increasing likelihood of relapse. The effects of current cocaine use and abstinence on neurobiology and cognition are not well characterized. METHODS Adult male rhesus monkeys with an extensive cocaine self-administration history (∼ 5 years) and age-matched control animals (n = 4/group) performed cognitive tasks in morning sessions and self-administered cocaine or food in afternoon sessions. Positron emission tomography and [(18)F]-fluorodeoxyglucose were employed to assess cerebral metabolic rates of glucose utilization during cognitive testing. RESULTS Cocaine-experienced monkeys required significantly more trials and committed more errors on reversal learning and multidimensional discriminations, compared with control animals. Cocaine-naive, but not cocaine-experienced, monkeys showed greater metabolic rates of glucose utilization during a multidimensional discrimination task in the caudate nucleus, hippocampus, anterior and posterior cingulate, and regions associated with attention, error detection, memory, and reward. Using a delayed match-to-sample task, there were no differences in baseline working memory performance between groups. High-dose cocaine self-administration disrupted delayed match-to-sample performance but tolerance developed. Acute abstinence from cocaine did not affect performance, but by day 30 of abstinence, accuracy increased significantly, while performance of cocaine-naive monkeys was unchanged. CONCLUSIONS These data document direct effects of cocaine self-administration on cognition and neurobiological sequelae underlying cognitive deficits. Improvements in working memory can occur in abstinence, albeit across an extended period critical for treatment seekers, suggesting pharmacotherapies designed to enhance cognition may improve success of current behavioral modification strategies.

Collaboration


Dive into the H. Donald Gage's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert H. Mach

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sudha Garg

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge