Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Eka D. Suchiman is active.

Publication


Featured researches published by H. Eka D. Suchiman.


Nature Genetics | 2013

Identification of seven loci affecting mean telomere length and their association with disease

Veryan Codd; Christopher P. Nelson; Eva Albrecht; Massimo Mangino; Joris Deelen; Jessica L. Buxton; Jouke-Jan Hottenga; Krista Fischer; Tonu Esko; Ida Surakka; Linda Broer; Dale R. Nyholt; Irene Mateo Leach; Perttu Salo; Sara Hägg; Mary Matthews; Jutta Palmen; Giuseppe Danilo Norata; Paul F. O'Reilly; Danish Saleheen; Najaf Amin; Anthony J. Balmforth; Marian Beekman; Rudolf A. de Boer; Stefan Böhringer; Peter S. Braund; Paul R. Burton; Anton J. M. de Craen; Yanbin Dong; Konstantinos Douroudis

Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci, including five new loci, associated with mean LTL (P < 5 × 10−8). Five of the loci contain candidate genes (TERC, TERT, NAF1, OBFC1 and RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all 7 loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of coronary artery disease (21% (95% confidence interval, 5–35%) per standard deviation in LTL, P = 0.014). Our findings support a causal role of telomere-length variation in some age-related diseases.


Nature Genetics | 2014

Whole-genome sequence variation, population structure and demographic history of the Dutch population

Laurent C. Francioli; Androniki Menelaou; Sara L. Pulit; Freerk van Dijk; Pier Francesco Palamara; Clara C. Elbers; Pieter B. T. Neerincx; Kai Ye; Victor Guryev; Wigard P. Kloosterman; Patrick Deelen; Abdel Abdellaoui; Elisabeth M. van Leeuwen; Mannis van Oven; Martijn Vermaat; Mingkun Li; Jeroen F. J. Laros; Lennart C. Karssen; Alexandros Kanterakis; Najaf Amin; Jouke-Jan Hottenga; Eric-Wubbo Lameijer; Mathijs Kattenberg; Martijn Dijkstra; Heorhiy Byelas; Jessica van Setten; Barbera D. C. van Schaik; Jan Bot; Isaac J. Nijman; Ivo Renkens

Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring families and constructed a haplotype map of 20.4 million single-nucleotide variants and 1.2 million insertions and deletions. The intermediate coverage (∼13×) and trio design enabled extensive characterization of structural variation, including midsize events (30–500 bp) previously poorly catalogued and de novo mutations. We demonstrate that the quality of the haplotypes boosts imputation accuracy in independent samples, especially for lower frequency alleles. Population genetic analyses demonstrate fine-scale structure across the country and support multiple ancient migrations, consistent with historical changes in sea level and flooding. The GoNL Project illustrates how single-population whole-genome sequencing can provide detailed characterization of genetic variation and may guide the design of future population studies.


Aging Cell | 2012

Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs.

Rudolf P. Talens; Kaare Christensen; Hein Putter; Gonneke Willemsen; Lene Christiansen; Dennis Kremer; H. Eka D. Suchiman; P. Eline Slagboom; Dorret I. Boomsma; Bastiaan T. Heijmans

The accumulation of epigenetic changes was proposed to contribute to the age‐related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18–89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus‐specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2‐fold larger at ABCA1 (P = 0.010) to 1.6‐fold larger at INS (P = 3.7 × 10−07). Similarly, there was more within‐MZ‐pair discordance in old as compared with young MZ pairs, except for GNASAS, ranging from an 8% increase in discordance each decade at CRH (P = 8.9 × 10−06) to a 16% increase each decade at LEP (P = 2.0 × 10−08). Still, old MZ pairs with strikingly similar DNA methylation were also observed at these loci. After 10‐year follow‐up in elderly twins, the variation in DNA methylation showed a similar pattern of change as observed cross‐sectionally. The age‐related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ twins during aging.


Twin Research and Human Genetics | 2013

The Adult Netherlands Twin Register: twenty-five years of survey and biological data collection.

Gonneke Willemsen; Jacqueline M. Vink; Abdel Abdellaoui; Anouk den Braber; Jenny H. D. A. van Beek; Harmen H. M. Draisma; Jenny van Dongen; Dennis van 't Ent; Lot M. Geels; René van Lien; Lannie Ligthart; Mathijs Kattenberg; Hamdi Mbarek; Marleen H. M. de Moor; Melanie Neijts; René Pool; Natascha Stroo; Cornelis Kluft; H. Eka D. Suchiman; P. Eline Slagboom; Eco J. C. de Geus; Dorret I. Boomsma

Over the past 25 years, the Adult Netherlands Twin Register (ANTR) has collected a wealth of information on physical and mental health, lifestyle, and personality in adolescents and adults. This article provides an overview of the sources of information available, the main research findings, and an outlook for the future. Between 1991 and 2012, longitudinal surveys were completed by twins, their parents, siblings, spouses, and offspring. Data are available for 33,957 participants, with most individuals having completed two or more surveys. Smaller projects provided in-depth phenotyping, including measurements of the autonomic nervous system, neurocognitive function, and brain imaging. For 46% of the ANTR participants, DNA samples are available and whole genome scans have been obtained in more than 11,000 individuals. These data have resulted in numerous studies on heritability, gene x environment interactions, and causality, as well as gene finding studies. In the future, these studies will continue with collection of additional phenotypes, such as metabolomic and telomere length data, and detailed genetic information provided by DNA and RNA sequencing. Record linkage to national registers will allow the study of morbidity and mortality, thus providing insight into the development of health, lifestyle, and behavior across the lifespan.


Epigenetics & Chromatin | 2013

Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array

Roderick C. Slieker; S.D. Bos; Jelle J. Goeman; Rudolf P. Talens; Ruud van der Breggen; H. Eka D. Suchiman; Eric-Wubbo Lameijer; Hein Putter; Erik B. van den Akker; Yanju Zhang; J. Wouter Jukema; P. Eline Slagboom; Ingrid Meulenbelt; Bastiaan T. Heijmans

BackgroundDNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples).ResultsThe majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner.ConclusionsWe conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity

Marian Beekman; Christa Nederstigt; H. Eka D. Suchiman; Dennis Kremer; Ruud van der Breggen; N. Lakenberg; Wendimagegn Ghidey Alemayehu; Anton J. M. de Craen; Rudi G. J. Westendorp; Dorret I. Boomsma; Eco J. C. de Geus; Jeanine J. Houwing-Duistermaat; Bastiaan T. Heijmans; P. Eline Slagboom

A set of currently known alleles increasing the risk for coronary artery disease, cancer, and type 2 diabetes as identified by genome-wide association studies was tested for compatibility with human longevity. Here, we show that nonagenarian siblings from long-lived families and singletons older than 85 y of age from the general population carry the same number of disease risk alleles as young controls. Longevity in this study population is not compromised by the cumulative effect of this set of risk alleles for common disease.


Nature Genetics | 2017

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Jan Bonder; René Luijk; Daria V. Zhernakova; Matthijs Moed; Patrick Deelen; Martijn Vermaat; Maarten van Iterson; Freerk van Dijk; Michiel van Galen; Jan Bot; Roderick C. Slieker; P. Mila Jhamai; Michael Verbiest; H. Eka D. Suchiman; Marijn Verkerk; Ruud van der Breggen; Jeroen van Rooij; N. Lakenberg; Wibowo Arindrarto; Szymon M. Kielbasa; Iris Jonkers; Peter van ‘t Hof; Irene Nooren; Marian Beekman; Joris Deelen; Diana van Heemst; Alexandra Zhernakova; Ettje F. Tigchelaar; Morris A. Swertz; Albert Hofman

Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.


Nature Communications | 2016

Genetic and environmental influences interact with age and sex in shaping the human methylome

Jenny van Dongen; Michel G. Nivard; Gonneke Willemsen; Jouke-Jan Hottenga; Quinta Helmer; Conor V. Dolan; Erik A. Ehli; Gareth E. Davies; Maarten van Iterson; Charles E. Breeze; Stephan Beck; H. Eka D. Suchiman; Rick Jansen; Joyce B. J. van Meurs; Bastiaan T. Heijmans; P. Eline Slagboom; Dorret I. Boomsma

The methylome is subject to genetic and environmental effects. Their impact may depend on sex and age, resulting in sex- and age-related physiological variation and disease susceptibility. Here we estimate the total heritability of DNA methylation levels in whole blood and estimate the variance explained by common single nucleotide polymorphisms at 411,169 sites in 2,603 individuals from twin families, to establish a catalogue of between-individual variation in DNA methylation. Heritability estimates vary across the genome (mean=19%) and interaction analyses reveal thousands of sites with sex-specific heritability as well as sites where the environmental variance increases with age. Integration with previously published data illustrates the impact of genome and environment across the lifespan at methylation sites associated with metabolic traits, smoking and ageing. These findings demonstrate that our catalogue holds valuable information on locations in the genome where methylation variation between people may reflect disease-relevant environmental exposures or genetic variation.


International Journal of Epidemiology | 2014

Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers

Joris Deelen; Marian Beekman; Veryan Codd; Stella Trompet; Linda Broer; Sara Hägg; Krista Fischer; Peter E. Thijssen; H. Eka D. Suchiman; Iris Postmus; André G. Uitterlinden; Albert Hofman; Anton J. M. de Craen; Andres Metspalu; Nancy L. Pedersen; Cornelia M. van Duijn; J. Wouter Jukema; Jeanine J. Houwing-Duistermaat; Nilesh J. Samani; P. Eline Slagboom

Background: Human leukocyte telomere length (LTL) decreases with age and shorter LTL has previously been associated with increased prospective mortality. However, it is not clear whether LTL merely marks the health status of an individual by its association with parameters of immune function, for example, or whether telomere shortening also contributes causally to lifespan variation in humans. Methods: We measured LTL in 870 nonagenarian siblings (mean age 93 years), 1580 of their offspring and 725 spouses thereof (mean age 59 years) from the Leiden Longevity Study (LLS). Results: We found that shorter LTL is associated with increased prospective mortality in middle (30–80 years; hazard ratio (HR) = 0.75, P = 0.001) and highly advanced age (≥90 years; HR = 0.92, P = 0.028), and show that this association cannot be explained by the association of LTL with the immune-related markers insulin-like growth factor 1 to insulin-like growth factor binding protein 3 molar ratio, C-reactive protein, interleukin 6, cytomegalovirus serostatus or white blood cell counts. We found no difference in LTL between the middle-aged LLS offspring and their spouses (β = 0.006, P = 0.932). Neither did we observe an association of LTL-associated genetic variants with mortality in a prospective meta-analysis of multiple cohorts (n = 8165). Conclusions: We confirm LTL to be a marker of prospective mortality in middle and highly advanced age and additionally show that this association could not be explained by the association of LTL with various immune-related markers. Furthermore, the approaches performed here do not further support the hypothesis that LTL variation contributes to the genetic propensity for longevity.


Experimental Gerontology | 2012

Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes: cross sectional and longitudinal studies.

Mette Soerensen; Serena Dato; Qihua Tan; Mikael Thinggaard; Rabea Kleindorp; Marian Beekman; Rune Jacobsen; H. Eka D. Suchiman; Anton J. M. de Craen; Rudi G. J. Westendorp; Stefan Schreiber; Tinna Stevnsner; Vilhelm A. Bohr; P. Eline Slagboom; Almut Nebel; James W. Vaupel; Kaare Christensen; Matt McGue; Lene Christiansen

Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92-93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (p<0.05), while rs9456497 (IGF2R) and rs1157146 (RAD52) showed non-significant tendencies, indicative of effects also in late life survival. In addition, rs207444 (XDH) presented the same direction of effect when inspecting the 6 SNPs from the longitudinal study in the case-control data, hence, suggesting an effect also in survival from middle age to old age. No formal replications were observed when investigating the 11 SNPs from the case-control study in 1613 oldest-old (age 95-110) and 1104 middle-aged Germans, although rs11571461 (RAD52) did show a supportive non-significant tendency (OR=1.162, 95% CI=0.927-1.457). The same was true for rs10047589 (TNXRD1) (HR=0.758, 95%CI=0.543-1.058) when examining the 6 SNPs from the longitudinal study in a Dutch longitudinal cohort of oldest-old (age 85+, N=563). In conclusion, the present candidate gene based association study, the largest to date applying a pathway approach, not only points to potential new longevity loci, but also underlines the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms.

Collaboration


Dive into the H. Eka D. Suchiman's collaboration.

Top Co-Authors

Avatar

P. Eline Slagboom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bastiaan T. Heijmans

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marian Beekman

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Lakenberg

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anton J. M. de Craen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joris Deelen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Roderick C. Slieker

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruud van der Breggen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge