Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Esteban Hopp is active.

Publication


Featured researches published by H. Esteban Hopp.


BMC Plant Biology | 2008

Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

Paula Fernández; Julio A. Di Rienzo; Luis Fernández; H. Esteban Hopp; Norma Paniego; Ruth A. Heinz

BackgroundConsidering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower.ResultsAbiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences.ConclusionEighty genes isolated from organ-specific cDNA libraries were identified as candidate genes for sunflower early response to low temperatures and salinity. Microarray profiling of chilling and NaCl-treated sunflower leaves revealed dynamic changes in transcript abundance, including transcription factors, defense/stress related proteins, and effectors of homeostasis, all of which highlight the complexity of both stress responses. This study not only allowed the identification of common transcriptional changes to both stress conditions but also lead to the detection of stress-specific genes not previously reported in sunflower. This is the first organ-specific cDNA fluorescence microarray study addressing a simultaneous evaluation of concerted transcriptional changes in response to chilling and salinity stress in cultivated sunflower.


Plant Cell Reports | 2011

Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis

Paula Fernández; Julio A. Di Rienzo; Sebastián Moschen; Guillermo A. A. Dosio; Luis A.N. Aguirrezábal; H. Esteban Hopp; Norma Paniego; Ruth A. Heinz

The selection and validation of reference genes constitute a key point for gene expression analysis based on qPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying α-TUB1 as the most stable expressing gene. BestKeeper revealed α-TUB and β-TUB as stable genes, scoring β-TUB as the most stable one. The statistical LMModel identified α-TUB, actin, PEP, and EF-1α as stable genes in this order. The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of α-TUB and EF-1α as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions.


BMC Plant Biology | 2008

Identification of Single Nucleotide Polymorphisms and analysis of Linkage Disequilibrium in sunflower elite inbred lines using the candidate gene approach

Corina M. Fusari; V. V. Lia; H. Esteban Hopp; Ruth A. Heinz; Norma Paniego

BackgroundAssociation analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis.ResultsA set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (θ = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 ± 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance).ConclusionKnowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2~0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.


BMC Genomics | 2003

Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project

Paula Virginia Fernández; Norma Paniego; Sergio Lew; H. Esteban Hopp; Ruth A. Heinz

BackgroundSubtractive hybridization methods are valuable tools for identifying differentially regulated genes in a given tissue avoiding redundant sequencing of clones representing the same expressed genes, maximizing detection of low abundant transcripts and thus, affecting the efficiency and cost effectiveness of small scale cDNA sequencing projects aimed to the specific identification of useful genes for breeding purposes. The objective of this work is to evaluate alternative strategies to high-throughput sequencing projects for the identification of novel genes differentially expressed in sunflower as a source of organ-specific genetic markers that can be functionally associated to important traits.ResultsDifferential organ-specific ESTs were generated from leaf, stem, root and flower bud at two developmental stages (R1 and R4). The use of different sources of RNA as tester and driver cDNA for the construction of differential libraries was evaluated as a tool for detection of rare or low abundant transcripts. Organ-specificity ranged from 75 to 100% of non-redundant sequences in the different cDNA libraries. Sequence redundancy varied according to the target and driver cDNA used in each case. The R4 flower cDNA library was the less redundant library with 62% of unique sequences. Out of a total of 919 sequences that were edited and annotated, 318 were non-redundant sequences. Comparison against sequences in public databases showed that 60% of non-redundant sequences showed significant similarity to known sequences. The number of predicted novel genes varied among the different cDNA libraries, ranging from 56% in the R4 flower to 16 % in the R1 flower bud library. Comparison with sunflower ESTs on public databases showed that 197 of non-redundant sequences (60%) did not exhibit significant similarity to previously reported sunflower ESTs. This approach helped to successfully isolate a significant number of new reported sequences putatively related to responses to important agronomic traits and key regulatory and physiological genes.ConclusionsThe application of suppressed subtracted hybridization technology not only enabled the cost effective isolation of differentially expressed sequences but it also allowed the identification of novel sequences in sunflower from a relative small number of analyzed sequences when compared to major sequencing projects.


Tree Genetics & Genomes | 2012

Discovery, validation, and in silico functional characterization of EST-SSR markers in Eucalyptus globulus

Cintia V. Acuña; Paula Fernández; Pamela V. Villalba; Martín N. Garcia; H. Esteban Hopp; Susana N. Marcucci Poltri

Eucalyptus globulus is the most commonly planted hardwood species for pulpwood in temperate regions. We aimed to develop and characterize functional molecular markers for population genetic analyses and molecular breeding in this model tree species. Public expressed sequence tag (EST) databases were screened for nonredundant sequences to predict putative gene functions and to discover simple sequence repeats (EST-SSRs), which were then validated in E. globulus and six other Eucalyptus species. A total of 4,924 nonredundant sequences were identified from 12,690 updated E. globulus ESTs. Approximately 19.3% (952) were unigenes and contained 1,140 EST-SSR markers, which were mainly trimeric (58.6%). A set of 979 primers for putative SSR markers was designed after bioinformatic analysis. The predicted functions of these ESTs containing SSR were classified according to their gene ontology (GO) categories (biological process, molecular function, and cellular component). GO categories were assigned to 226 ESTs (30.2%). Most ESTs containing SSR (78.7%) had significant matches (E ≤ 10−5) with the nonredundant protein database using BLASTX. From a set of 56 random primer pairs, 37 could be validated in eight E. globulus genotypes and were also tested for cross-transferability to other six Eucalyptus species (Eucalyptus grandis, Eucalyptus saligna, Eucalyptus dunnii, Eucalyptus viminalis, Eucalyptus camaldulensis, Eucalyptus tereticornis). Seventeen polymorphic EST-SSR markers for E. globulus were evaluated in 60 unrelated trees, being representative of the species’ natural distribution. As a result, six highly informative markers were proposed for genetic diversity analyses, fingerprinting, and comparative population studies, between different species of E. globulus.


BMC Genomics | 2013

De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba

Susana Torales; Máximo Rivarola; María F. Pomponio; Sergio Gonzalez; Cintia V. Acuña; Paula Fernández; Diego López Lauenstein; Aníbal R. Verga; H. Esteban Hopp; Norma Paniego; Susana N. Marcucci Poltri

BackgroundProsopis alba (Fabaceae) is an important native tree adapted to arid and semiarid regions of north-western Argentina which is of great value as multipurpose species. Despite its importance, the genomic resources currently available for the entire Prosopis genus are still limited. Here we describe the development of a leaf transcriptome and the identification of new molecular markers that could support functional genetic studies in natural and domesticated populations of this genus.ResultsNext generation DNA pyrosequencing technology applied to P. alba transcripts produced a total of 1,103,231 raw reads with an average length of 421 bp. De novo assembling generated a set of 15,814 isotigs and 71,101 non-assembled sequences (singletons) with an average of 991 bp and 288 bp respectively. A total of 39,000 unique singletons were identified after clustering natural and artificial duplicates from pyrosequencing reads.Regarding the non-redundant sequences or unigenes, 22,095 out of 54,814 were successfully annotated with Gene Ontology terms. Moreover, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 5,992 and 6,236 markers, respectively, throughout the genome. For the validation of the the predicted SSR markers, a subset of 87 SSRs selected through functional annotation evidence was successfully amplified from six DNA samples of seedlings. From this analysis, 11 of these 87 SSRs were identified as polymorphic. Additionally, another set of 123 nuclear polymorphic SSRs were determined in silico, of which 50% have the probability of being effectively polymorphic.ConclusionsThis study generated a successful global analysis of the P. alba leaf transcriptome after bioinformatic and wet laboratory validations of RNA-Seq data.The limited set of molecular markers currently available will be significantly increased with the thousands of new markers that were identified in this study. This information will strongly contribute to genomics resources for P. alba functional analysis and genetics. Finally, it will also potentially contribute to the development of population-based genome studies in the genera.


Archives of Virology | 2010

The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus

A. J. Distéfano; Iván Bonacic Kresic; H. Esteban Hopp

Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.


Molecular Breeding | 2011

Single nucleotide polymorphism genotyping by heteroduplex analysis in sunflower (Helianthus annuus L.)

Corina M. Fusari; V. V. Lia; Verónica Nishinakamasu; Jeremías Enrique Zubrzycki; Andrea F. Puebla; Alberto E. Maligne; H. Esteban Hopp; Ruth A. Heinz; Norma Paniego

Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) are increasingly used for cultivar identification, construction of genetic maps, genetic diversity assessment, association mapping and marker-assisted breeding. Although there are several highly sensitive methods for the detection of polymorphisms, most of them are often beyond the budget of medium-throughput academic laboratories or seed companies. Heteroduplex analysis by enzymatic cleavage (CEL1CH) or denaturing high-performance liquid chromatography (dHPLC) has been successfully used to examine genetic variation in several plant and animal species. In this work, we assess and compare the performance of both methods in sunflower by genotyping SNPs from a set of 24 selected polymorphic candidate genes. The CEL1CH method allowed us to accurately detect allele differences in 10 out of 24 regions using an in-house prepared CEL1 enzyme (celery single strand endonuclease 1, Apium graveolens L.). Similarly, a total of 11 regions were successfully optimized for dHPLC analysis. As a scaling-up approach, both strategies were tested to genotype either 42 SNPs/indels in 22 sunflower accessions from the local germplasm bank or 33 SNPs/indels in 90 recombinant inbred lines (RILs) for genetic mapping purposes. Summarizing, a total of 601 genotypes were efficiently analyzed either with CEL1CH (110) or dHPCL (491). In conclusion, CEL1CH and dHPLC proved to be robust, complementary methods, allowing medium-scale laboratories to scale up the number of both SNPs and individuals to be included in genetic studies and targeted germplasm diversity characterization (EcoTILLING).


Planta | 2009

Cloning and functional characterization of a fructan 1-exohydrolase (1-FEH) in the cold tolerant Patagonian species Bromus pictus.

Florencia del Viso; Andrea F. Puebla; H. Esteban Hopp; Ruth A. Heinz

Fructans are fructose polymers synthesized in a wide range of species such as bacteria, fungi and plants. Fructans are synthesized by fructosyltransferases (FTs) and depolymerized by fructan exohydrolases (FEHs). Bromus pictus is a graminean decaploid species from the Patagonian region of Argentina, which accumulates large amounts of fructans even at temperate temperatures. The first gene isolated from B. pictus fructan metabolism was a putative sucrose:fructan 6-fructosyltransferase (6-SFT). Here, a complete cDNA of the first fructan exohydrolase (FEH) from B. pictus (Bp1-FEHa) was isolated using RT-PCR strategies. The Bp1-FEHa encoding gene is present as a single copy in B. pictus genome. Functional characterization in Pichia pastoris confirmed Bp1-FEHa is a fructan exohydrolase with predominant activity towards β-(2-1) linkages. Its expression was analyzed in different leaf sections, showing the highest expression levels in the second section of the sheath and the tip of the blade. Bp1-FEHa expression was studied along with FEH and FT activities and fructan accumulation profile in response to chilling conditions during a 7-day time course experiment. Bp1-FEHa expression and FEH activity followed a similar pattern in response to low temperatures, especially in basal sections of the sheaths. In these sections the FEH and FT activities were particularly high and they were significantly correlated to fructan accumulation profile, along with cold treatment.


Plant Molecular Biology | 2017

Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

Sebastián Moschen; Julio A. Di Rienzo; Janet Higgins; Takayuki Tohge; Mutsumi Watanabe; Sergio Gonzalez; Máximo Rivarola; Francisco García-García; Joaquín Dopazo; H. Esteban Hopp; Rainer Hoefgen; Alisdair R. Fernie; Norma Paniego; Paula Virginia Fernández; Ruth A. Heinz

Key messageBy integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding.AbstractDrought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

Collaboration


Dive into the H. Esteban Hopp's collaboration.

Top Co-Authors

Avatar

Ruth A. Heinz

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Julio A. Di Rienzo

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. V. Lia

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Lidia Poggio

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Norma Paniego

International Trademark Association

View shared research outputs
Top Co-Authors

Avatar

Sara Maldonado

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge