Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Fai Poon is active.

Publication


Featured researches published by H. Fai Poon.


Journal of Neurochemistry | 2003

The antioxidants a-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice

Susan A. Farr; H. Fai Poon; Dilek Dogrukol-Ak; Jeniffer Drake; William A. Banks; Edward Eyerman; D. Allan Butterfield; John E. Morley

Oxidative stress may play a crucial role in age‐related neurodegenerative disorders. Here, we examined the ability of two antioxidants, α‐lipoic acid (LA) and N‐acetylcysteine (NAC), to reverse the cognitive deficits found in the SAMP8 mouse. By 12 months of age, this strain develops elevated levels of Aβ and severe deficits in learning and memory. We found that 12‐month‐old SAMP8 mice, in comparison with 4‐month‐old mice, had increased levels of protein carbonyls (an index of protein oxidation), increased TBARS (an index of lipid peroxidation) and a decrease in the weakly immobilized/strongly immobilized (W/S) ratio of the protein‐specific spin label MAL‐6 (an index of oxidation‐induced conformational changes in synaptosomal membrane proteins). Chronic administration of either LA or NAC improved cognition of 12‐month‐old SAMP8 mice in both the T‐maze footshock avoidance paradigm and the lever press appetitive task without inducing non‐specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood–brain barrier and accumulated in the brain. Furthermore, treatment of 12‐month‐old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.


Neurobiology of Disease | 2006

Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease.

D. Allan Butterfield; H. Fai Poon; Daret K. St. Clair; Jeffery N. Keller; William M. Pierce; Jon B. Klein; William R. Markesbery

Mild cognitive impairment (MCI) is generally referred to the transitional zone between normal cognitive function and early dementia or clinically probable Alzheimers disease (AD). Oxidative stress plays a significant role in AD and is increased in the superior/middle temporal gyri of MCI subjects. Because AD involves hippocampal-resident memory dysfunction, we determined protein oxidation and identified the oxidized proteins in the hippocampi of MCI subjects. We found that protein oxidation is significantly increased in the hippocampi of MCI subjects when compared to age- and sex-matched controls. By using redox proteomics, we determined the oxidatively modified proteins in MCI hippocampus to be alpha-enolase (ENO1), glutamine synthetase (GLUL), pyruvate kinase M2 (PKM2) and peptidyl-prolyl cis/trans isomerase 1 (PIN1). The interacteome of these proteins revealed that these proteins functionally interact with SRC, hypoxia-inducible factor 1, plasminogen (PLG), MYC, tissue plasminogen activator (PLAT) and BCL2L1. Moreover, the interacteome indicates the functional involvement of energy metabolism, synaptic plasticity and mitogenesis/proliferation. Therefore, oxidative inactivation of ENO1, GLUL and PIN1 may alter these cellular processes and lead to the development of AD from MCI. We conclude that protein oxidation plays a significant role in the development of AD from MCI and that the oxidative inactivation of ENO1, GLUL, PKM2 and PIN1 is involved in the progression of AD from MCI. The current study provides a framework for future studies on the development of AD from MCI relevant to oxidative stress.


Neurobiology of Aging | 2006

Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: An approach to understand pathological and biochemical alterations in AD

Rukhsana Sultana; Debra Boyd-Kimball; H. Fai Poon; Jian Cai; William M. Pierce; Jon B. Klein; Michael L. Merchant; William R. Markesbery; D. Allan Butterfield

Alzheimers disease (AD) is characterized by the presence of neurofibrillary tangles, senile plaques and loss of synapses. There is accumulating evidence that oxidative stress plays an important role in AD pathophysiology. Previous redox proteomics studies from our laboratory on AD inferior parietal lobule led to the identification of oxidatively modified proteins that were consistent with biochemical or pathological alterations in AD. The present study was focused on the identification of specific targets of protein oxidation in AD and control hippocampus and cerebellum using a redox proteomics approach. In AD hippocampus, peptidyl prolyl cis-trans isomerase, phosphoglycerate mutase 1, ubiquitin carboxyl terminal hydrolase 1, dihydropyrimidinase related protein-2 (DRP-2), carbonic anhydrase II, triose phosphate isomerase, alpha-enolase, and gamma-SNAP were identified as significantly oxidized protein with reduced enzyme activities relative to control hippocampus. In addition, no significant excessively oxidized protein spots were identified in cerebellum compared to control, consistent with the lack of pathology in this brain region in AD. The identification of oxidatively modified proteins in AD hippocampus was verified by immunochemical means. The identification of common oxidized proteins in different brain regions of AD brain suggests a potential role for these oxidized proteins and thereby oxidative stress in the pathogenesis of Alzheimers disease.


Neurobiology of Aging | 2006

Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis

Rukhsana Sultana; Debra Boyd-Kimball; H. Fai Poon; Jain Cai; William M. Pierce; Jon B. Klein; William R. Markesbery; Xiao Zhen Zhou; Kun Ping Lu; D. Allan Butterfield

Alzheimer disease (AD) is characterized neuropathologically by intracellular neurofibrillary tangles (NFT) and of extracellular senile plaques (SP), the central core of which is amyloid beta-peptide (Abeta) derived from amyloid precursor protein (APP), a transmembrane protein. AD brain has been reported to be under oxidative stress that may play an important role in the pathogenesis and progression of AD. The present proteomics study is focused on identification of a specific target of protein oxidation in AD hippocampus that has relevance to the role of oxidative stress in AD. Here, we report that the protein, Pin1, is significantly down-regulated and oxidized in AD hippocampus. The identity of Pin1 was confirmed immunochemically. Analysis of Pin1 activity in AD brain and separately as oxidized pure Pin1 demonstrated that oxidation of Pin1 led to loss of activity. Pin1 has been implicated in multiple aspects of cell cycle regulation and dephosphorylation of tau protein as well as in AD. The in vivo oxidative modification of Pin1 as found by proteomics in AD hippocampus in the present study suggests that oxidative modification may be related to the known loss of Pin1 isomerase activity that could be crucial in AD neurofibrillary pathology. Taken together, these results provide evidence supporting a direct link between oxidative damage to neuronal Pin1 and the pathobiology of AD.


Experimental Gerontology | 2005

The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

D. Allan Butterfield; H. Fai Poon

The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels.


Neuroscience | 2005

Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid β-peptide (1–42) into rat brain: Implications for Alzheimer’s disease

D. Boyd-Kimball; Rukhsana Sultana; H. Fai Poon; Bert C. Lynn; Fiorella Casamenti; Giancarlo Pepeu; Jon B. Klein; D.A. Butterfield

Protein oxidation has been shown to result in loss of protein function. There is increasing evidence that protein oxidation plays a role in the pathogenesis of Alzheimers disease (AD). Amyloid beta-peptide (1-42) [Abeta(1-42)] has been implicated as a mediator of oxidative stress in AD. Additionally, Abeta(1-42) has been shown to induce cholinergic dysfunction when injected into rat brain, a finding consistent with cholinergic deficits documented in AD. In this study, we used proteomic techniques to examine the regional in vivo protein oxidation induced by Abeta(1-42) injected into the nucleus basalis magnocellularis (NBM) of rat brain compared with saline-injected control at 7 days post-injection. In the cortex, we identified glutamine synthetase and tubulin beta chain 15/alpha, while, in the NBM, we identified 14-3-3 zeta and chaperonin 60 (HSP60) as significantly oxidized. Extensive oxidation was detected in the hippocampus where we identified 14-3-3 zeta, beta-synuclein, pyruvate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase 1. The results of this study suggest that a single injection of Abeta(1-42) into NBM can have profound effects elsewhere in the brain. The results further suggest that Abeta(1-42)-induced oxidative stress in rat brain mirrors some of those proteins oxidized in AD brain and leads to oxidized proteins, which when inserted into their respective biochemical pathways yields insight into brain dysfunction that can lead to neurodegeneration in AD.


Neurobiology of Disease | 2005

Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice: a model of familial Parkinson's disease

H. Fai Poon; Mark Frasier; Nathan Shreve; Vittorio Calabrese; Benjamin Wolozin; D. Allan Butterfield

Parkinsons disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P alpha-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Eno1), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein.


Molecular & Cellular Proteomics | 2005

Proteomic Analysis of Protein Expression and Oxidative Modification in R6/2 Transgenic Mice A Model of Huntington Disease

Marzia Perluigi; H. Fai Poon; William F. Maragos; William M. Pierce; Jon B. Klein; Vittoriio Calabrese; Chiara Cini; Carlo De Marco; D. Allan Butterfield

Huntington disease (HD) is a hereditary neurodegenerative disorder characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin on chromosome 4, has been unambiguously identified. On the other hand, the mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in energy metabolism of affected cells may cause oxidative damage, which has been proposed as one of the underlying molecular mechanisms that participate in the etiology of the disease. In our effort to investigate the extent of oxidative damage occurring at the protein level, we used a parallel proteomic approach to identify proteins potentially involved in processes upstream or downstream of the disease-causing huntingtin in a well established HD mouse model (R6/2 transgenic mice). We have demonstrated that the expression levels of dihydrolipoamide S-succinyltransferase and aspartate aminotransferase increase consistently over the course of disease (10-week-old mice). In contrast, pyruvate dehydrogenase expression levels were found to be decreased in 10-week-old HD transgenic mice compared with young (4-week-old) mice. Our experimental approach also led to the identification of oxidatively modified proteins. Six proteins were found to be significantly oxidized in old R6/2 transgenic mice compared with either young transgenic mice or non-transgenic mice. These proteins are α-enolase, γ-enolase (neuron-specific enolase), aconitase, the voltage-dependent anion channel 1, heat shock protein 90, and creatine kinase. Because oxidative damage has proved to play an important role in the pathogenesis and the progression of Huntington disease, our results for the first time identify specific oxidatively modified proteins that potentially contribute to the pathogenesis of Huntington disease.


Neurobiology of Aging | 2006

Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice

H. Fai Poon; Radhika A. Vaishnav; Thomas V. Getchell; Marilyn L. Getchell; D. Allan Butterfield

The brain is susceptible to oxidative stress, which is associated with age-related brain dysfunction, because of its high content of peroxidizable unsaturated fatty acids, high oxygen consumption per unit weight, high content of key components for oxidative damage, and the relative scarcity of antioxidant defense systems. Protein oxidation, which results in functional disruption, is not random but appears to be associated with increased oxidation in specific proteins. By using a proteomics approach, we have compared the protein levels and specific protein carbonyl levels, an index of oxidative damage in the brains of old mice, to these parameters in the brains of young mice and have identified specific proteins that are altered as a function of aging. We show here that the expression levels of dihydropyrimidinase-like 2 (DRP2), alpha-enolase (ENO1), dynamin-1 (DNM1), and lactate dehydrogenase 2 (LDH2) were significantly increased in the brains of old versus young mice; the expression levels of three unidentified proteins were significantly decreased. The specific carbonyl levels of beta-actin (ACTB), glutamine synthase (GS), and neurofilament 66 (NF-66) as well as a novel protein were significantly increased, indicating protein oxidation, in the brains of old versus young mice. These results were validated by immunochemistry. In addition, enzyme activity assays demonstrated that oxidation was associated with decreased GS activity, while the activity of lactate dehydrogenase was unchanged in spite of an up-regulation of LDH2 levels. Several of the up-regulated and oxidized proteins in the brains of old mice identified in this report are known to be oxidized in neurodegenerative diseases as well, suggesting that these proteins may be particularly susceptible to processes associated with neurodegeneration. Our results establish an initial basis for understanding protein alterations that may lead to age-related cellular dysfunction in the brain.


Brain Research | 2005

Proteomic identification of proteins oxidized by Aβ(1–42) in synaptosomes: Implications for Alzheimer's disease

Debra Boyd-Kimball; Alessandra Castegna; Rukhsana Sultana; H. Fai Poon; Robin Petroze; Bert C. Lynn; Jon B. Klein; D. Allan Butterfield

Protein oxidation has been implicated in Alzheimers disease (AD) and can lead to loss of protein function, abnormal protein turnover, interference with cell cycle, imbalance of cellular redox potential, and eventually cell death. Recent proteomics work in our laboratory has identified specifically oxidized proteins in AD brain such as: creatine kinase BB, glutamine synthase, ubiquitin carboxy-terminal hydrolase L-1, dihydropyrimidase-related protein 2, alpha-enolase, and heat shock cognate 71, indicating that a number of cellular mechanisms are affected including energy metabolism, excitotoxicity and/or synaptic plasticity, protein turnover, and neuronal communication. Synapse loss is known to be an early pathological event in AD, and incubation of synaptosomes with amyloid beta peptide 1-42 (Abeta 1-42) leads to the formation of protein carbonyls. In order to test the involvement of Abeta(1-42) in the oxidation of proteins in AD brain, we utilized two-dimensional gel electrophoresis, immunochemical detection of protein carbonyls, and mass spectrometry to identify proteins from synaptosomes isolated from Mongolian gerbils. Abeta(1-42) treatment leads to oxidatively modified proteins, consistent with the notion that Abeta(1-42)-induced oxidative stress plays an important role in neurodegeneration in AD brain. In this study, we identified beta-actin, glial fibrillary acidic protein, and dihydropyrimidinase-related protein-2 as significantly oxidized in synaptosomes treated with Abeta(1-42). Additionally, H+-transporting two-sector ATPase, syntaxin binding protein 1, glutamate dehydrogenase, gamma-actin, and elongation factor Tu were identified as increasingly carbonylated. These results are discussed with respect to their potential involvement in the pathogenesis of AD.

Collaboration


Dive into the H. Fai Poon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon B. Klein

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Banks

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge