H. Fukuzawa
Tohoku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. Fukuzawa.
Journal of Chemical Physics | 2010
Motomichi Tashiro; Masahiro Ehara; H. Fukuzawa; K. Ueda; Christian Buth; Nikolai V. Kryzhevoi; Lorenz S. Cederbaum
We explore the potential of double core hole electron spectroscopy for chemical analysis in terms of x-ray two-photon photoelectron spectroscopy. The creation of deep single and double core vacancies induces significant reorganization of valence electrons. The corresponding relaxation energies and the interatomic relaxation energies are evaluated by complete active space self-consistent field (CASSCF) calculations. We propose a method on how to experimentally extract these quantities by the measurement of single ionization potentials (IPs) and double core hole ionization potentials (DIPs). The influence of the chemical environment on these DIPs is also discussed for states with two holes at the same atomic site and states with two holes at two different atomic sites. Electron density difference between the ground and double core hole states clearly shows the relaxations accompanying the double core hole ionization. The effect is also compared to the sensitivity of single core hole IPs arising in single co...
Physical Review Letters | 2013
H. Fukuzawa; Sang-Kil Son; K. Motomura; S. Mondal; K. Nagaya; S. Wada; XiaoJing Liu; R. Feifel; T. Tachibana; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda
We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.
Journal of Modern Optics | 2010
N. Berrah; John D. Bozek; John T. Costello; S. Düsterer; Li Fang; J. Feldhaus; H. Fukuzawa; M. Hoener; Y. H. Jiang; Per Johnsson; Eugene T. Kennedy; M. Meyer; R. Moshammer; P. Radcliffe; M. Richter; Arnaud Rouzée; A. Rudenko; A.A. Sorokin; K. Tiedtke; K. Ueda; Joachim H. Ullrich; M. J. J. Vrakking
The advent of free electron laser (FEL) facilities capable of delivering high intensity pulses in the extreme-UV to X-ray spectral range has opened up a wide vista of opportunities to study and control light matter interactions in hitherto unexplored parameter regimes. In particular, current short wavelength FELs can uniquely drive non-linear processes mediated by inner shell electrons and in fields where the photon energy can be as high as 10 keV and so the corresponding optical period reaches below one attosecond. Combined with ultrafast optical lasers, or simply employing wavefront division, pump probe experiments can be performed with femtosecond time resolution. As single photon ionization of atoms and molecules is by now very well understood, they provide the ideal targets for early experiments by which not only FELs can be characterised and benchmarked but can also be the natural departure point in the hunt for non-linear behaviour of atomistic systems bathed in laser fields of ultrahigh photon energy. In this topical review we illustrate with specific examples the gamut of apposite experiments in atomic, molecular physics currently underway at the SCSS Test Accelerator (Japan), FLASH (Hamburg) and LCLS (Stanford).
Optics Express | 2011
R. Moshammer; Thomas Pfeifer; A. Rudenko; Y. H. Jiang; Lutz Foucar; M. Kurka; K. U. Kühnel; C. D. Schröter; Joachim Ullrich; Oliver Herrwerth; Matthias F. Kling; K. Motomura; H. Fukuzawa; Atsushi Yamada; K. Ueda; Ken-ichi Ishikawa; K. Nagaya; H. Iwayama; A. Sugishima; Y. Mizoguchi; S. Yase; Makoto Yao; Norio Saito; A. Belkacem; Mitsuru Nagasono; Atsushi Higashiya; Makina Yabashi; T. Ishikawa; H. Ohashi; Hiroyuki Kimura
Second-order autocorrelation spectra of XUV free-electron laser pulses from the Spring-8 Compact SASE Source (SCSS) have been recorded by time and momentum resolved detection of two-photon single ionization of He at 20.45 eV using a split-mirror delay-stage in combination with high-resolution recoil-ion momentum spectroscopy (COLTRIMS). From the autocorrelation trace we extract a coherence time of 8 ± 2 fs and a mean pulse duration of 28 ± 5 fs, much shorter than estimations based on electron bunch-length measurements. Simulations within the partial coherence model [Opt. Lett. 35, 3441 (2010)] are in agreement with experiment if a pulse-front tilt across the FEL beam diameter is taken into account that leads to a temporal shift of about 6 fs between both pulse replicas.
Scientific Reports | 2015
T. Tachibana; Zoltan Jurek; H. Fukuzawa; K. Motomura; K. Nagaya; S. Wada; Per Johnsson; M. Siano; S. Mondal; Yuta Ito; M. Kimura; T. Sakai; K. Matsunami; H. Hayashita; J. Kajikawa; E. Robert; Catalin Miron; Raimund Feifel; J. P. Marangos; Kensuke Tono; Yuichi Inubushi; Makina Yabashi; Sang-Kil Son; Beata Ziaja; Makoto Yao; Robin Santra; K. Ueda
Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.
Journal of Chemical Physics | 2008
T. Darrah Thomas; Edwin Kukk; R. Sankari; H. Fukuzawa; G. Prümper; K. Ueda; Ralph Püttner; James Harries; Y. Tamenori; Takahiro Tanaka; M. Hoshino; H. Tanaka
The carbon 1s photoelectron spectrum of CF4 measured at photon energies from 330 to 1500 eV shows significant contributions from nonsymmetric vibrational modes. These increase linearly as the photon energy increases. The excitation of these modes, which is not predicted in the usual Franck-Condon point of view, arises from the recoil momentum imparted to the carbon atom in the ionization process. A theory is presented for quantitative prediction of the recoil effect; the predictions of this theory are in agreement to the measurements. The experiments also yield the vibrational frequencies of the symmetric and asymmetric stretching modes in core-ionized CF4, the change in CF bond length upon ionization, -0.61 pm, and the Lorentzian linewidth of the carbon 1s hole, 67 meV.
Science Advances | 2016
Ken R. Ferguson; Maximilian Bucher; Tais Gorkhover; Sébastien Boutet; H. Fukuzawa; Jason E. Koglin; Yoshiaki Kumagai; Alberto Lutman; Agostino Marinelli; M. Messerschmidt; K. Nagaya; Jim Turner; K. Ueda; Garth J. Williams; P. H. Bucksbaum; Christoph Bostedt
Ultrafast x-ray heating of clusters leads to bond contraction in the solid-to-plasma transition. In condensed matter systems, strong optical excitations can induce phonon-driven processes that alter their mechanical properties. We report on a new phenomenon where a massive electronic excitation induces a collective change in the bond character that leads to transient lattice contraction. Single large van der Waals clusters were isochorically heated to a nanoplasma state with an intense 10-fs x-ray (pump) pulse. The structural evolution of the nanoplasma was probed with a second intense x-ray (probe) pulse, showing systematic contraction stemming from electron delocalization during the solid-to-plasma transition. These findings are relevant for any material in extreme conditions ranging from the time evolution of warm or hot dense matter to ultrafast imaging with intense x-ray pulses or, more generally, any situation that involves a condensed matter-to-plasma transition.
Journal of Physics B | 2013
K. Motomura; H. Fukuzawa; S-K Son; S. Mondal; T. Tachibana; Yuta Ito; M. Kimura; K. Nagaya; T. Sakai; K. Matsunami; S. Wada; H. Hayashita; J. Kajikawa; R. Feifel; Per Johnsson; M. Siano; Edwin Kukk; Benedikt Rudek; Benjamin Erk; Lutz Foucar; E. Robert; Catalin Miron; Kensuke Tono; Yuichi Inubushi; Takaki Hatsui; Makina Yabashi; Makoto Yao; Robin Santra; K. Ueda
We have investigated multiphoton multiple ionization of argon and xenon atoms at 5 keV using a new x-ray free electron laser (XFEL) facility, the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan. The experimental results are compared with the new theoretical results presented here. The absolute fluence of the XFEL pulse has been determined with the help of the calculations utilizing two-photon processes in the argon atom. The high charge states up to +22 observed for Xe in comparison with the calculations point to the occurrence of sequential L-shell multiphoton absorption and of resonance-enabled x-ray multiple ionization.
Journal of Physics B | 2009
H. Iwayama; K. Nagaya; Makoto Yao; H. Fukuzawa; G. Prümper; M. Okunishi; K. Shimada; K. Ueda; T. Harada; Mitsunori Toyoda; Mihiro Yanagihara; Masaki Yamamoto; K. Motomura; Norio Saito; A. Rudenko; J. Ullrich; Lutz Foucar; A. Czasch; R. Dörner; M. Nagasono; A. Higashiya; M. Yabashi; T. Ishikawa; Hideo Ohashi; Hiroyuki Kimura
We have measured the kinetic energies of fragment ions from Ar clusters (average cluster size N~ 10?600) exposed to intense extreme ultraviolet free electron laser pulses (? ~ 61 nm, I~ 1.3? 1011 W cm?2). For small clusters (N 200), the average kinetic energy of ions strongly increases with increasing the cluster size, indicating a promotion of the multiple ionization, whereas the average kinetic energy is observed to be saturated for N 200. Considering how many photoelectrons can escape from the cluster, it was found that the size dependence of the ion kinetic energy exhibited the frustration of direct photoionization, which resulted from the strong Coulomb potential of the highly ionized cluster.
Journal of Physics B | 2008
K. Kreidi; T. Jahnke; Th. Weber; T. Havermeier; R. E. Grisenti; Y. Morisita; S. Schössler; L. Ph. H. Schmidt; M. Schöffler; M. Odenweller; N. Neumann; L. Foucar; J. Titze; B. Ulrich; F. Sturm; C. Stuck; R. Wallauer; S. Voss; I. Lauter; H.-K. Kim; M. Rudloff; H. Fukuzawa; G. Prümper; Norio Saito; K. Ueda; A. Czasch; O. Jagutzki; H. Schmidt-Böcking; S. K. Semenov; N. A. Cherepkov
We used cold target recoil ion momentum spectroscopy (COLTRIMS) to investigate the decay of Ne2 after K-shell photoionization. The breakup into Ne1+/Ne2+ shows interatomic Coulombic decay (ICD) occurring after a preceding atomic Auger decay. The molecular frame angular distributions of the photoelectron and the ICD electron show distinct, asymmetric features, which imply localization of the K-vacancy created at one of the two atomic sites of the Ne2 and an emission of the ICD electron from a localized site. The experimental results are supported by calculations in the frozen core Hartree–Fock approach.
Collaboration
Dive into the H. Fukuzawa's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs