Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.G.P. van Gennip is active.

Publication


Featured researches published by H.G.P. van Gennip.


Journal of Virology | 2000

Passage of Classical Swine Fever Virus in Cultured Swine Kidney Cells Selects Virus Variants That Bind to Heparan Sulfate due to a Single Amino Acid Change in Envelope Protein Erns

Marcel Hulst; H.G.P. van Gennip; R. J. M. Moormann

ABSTRACT Infection of cells with Classical swine fever virus (CSFV) is mediated by the interaction of envelope glycoprotein Ernsand E2 with the cell surface. In this report we studied the role of the cell surface glycoaminoglycans (GAGs), chondroitin sulfates A, B, and C (CS-A, -B, and -C), and heparan sulfate (HS) in the initial binding of CSFV strain Brescia to cells. Removal of HS from the surface of swine kidney cells (SK6) by heparinase I treatment almost completely abolished infection of these cells with virus that was extensively passaged in swine kidney cells before it was cloned (clone C1.1.1). Infection with C1.1.1 was inhibited completely by heparin (a GAG chemically related to HS but sulfated to a higher extent) and by dextran sulfate (an artificial highly sulfated polysaccharide), whereas HS and CS-A, -B, and -C were unable to inhibit infection. Bound C1.1.1 virus particles were released from the cell surface by treatment with heparin. Furthermore, C1.1.1 virus particles and CSFV Ernspurified from insect cells bound to immobilized heparin, whereas purified CSFV E2 did not. These results indicate that initial binding of this virus clone is accomplished by the interaction of Erns with cell surface HS. In contrast, infection of SK6 cells with virus clones isolated from the blood of an infected pig and minimally passaged in SK6 cells was not affected by heparinase I treatment of cells and the addition of heparin to the medium. However, after one additional round of amplification in SK6 cells, infection with these virus clones was affected by heparinase I treatment and heparin. Sequence analysis of the Erns genes of these virus clones before and after amplification in SK6 cells showed that passage in SK6 cells resulted in a change of an Ser residue to an Arg residue in the C terminus of Erns (amino acid 476 in the polyprotein of CSFV). Replacement of the Erns gene of an infectious DNA copy of C1.1.1 with the Erns genes of these virus variants proved that acquisition of this Arg was sufficient to alter an HS-independent virus to a virus that uses HS as an Erns receptor.


Vaccine | 2000

Chimeric classical swine fever viruses containing envelope protein ERNS or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response.

H.G.P. van Gennip; P.A. van Rijn; M.N. Widjojoatmodjo; A.J. de Smit; R. J. M. Moormann

Three chimeric classical swine fever virus (CSFV)/bovine viral diarrhoea virus (BVDV) full-length DNA copies were constructed, based on the infectious DNA copy of the CSFV vaccine strain C. The antigenic region of E2 and/or the complete E(RNS) gene were replaced by the analogous sequence of BVDV II strain 5250. Viable chimeric virus Flc11, in which E(RNS) was replaced, was directly recovered from supernatant of SK6.T7 cells transfected with full-length DNA. Viable chimeric virus Flc9, in which E2 was replaced, resulted in recovery of virus only when SK6.T7 transfected cells were maintained for several passages. However, no virus could be recovered after replacement of both E(RNS) and E2, even after 10 cell passages. Both Flc9 and Flc11 grow in swine kidney cells (SK6), stably maintain their heterologous BVDV sequences and, as assessed by monoclonal antibody typing and radio-immunoprecipitation assays, express their heterologous proteins. Flc9 showed a slower growth rate on SK6 cells than Flc11 and wild-type Flc2 virus. Replacement of E(RNS) or E2 of C-strain-based chimeric viruses did not alter cell tropism compared to wild-type C-strain virus for SK6 and FBE cells. Both Flc9 and Flc11 induced E2 or E(RNS) antibodies, which could be discriminated from those induced after wild-type virus infection, even after repeated vaccination. Furthermore, pigs were completely protected against a lethal CSFV challenge. These results indicate the feasibility of introduction of marker antigens in a live-attenuated marker C-strain vaccine for CSFV.


Journal of Virology | 2000

Classical Swine Fever Virus Erns Deletion Mutants: trans-Complementation and Potential Use as Nontransmissible, Modified, Live-Attenuated Marker Vaccines

M.N. Widjojoatmodjo; H.G.P. van Gennip; A. Bouma; P.A. van Rijn; R. J. M. Moormann

ABSTRACT An SK6 cell line (SK6c26) which constitutively expressed the glycoprotein Erns of classical swine fever virus (CSFV) was used to rescue CSFV Erns deletion mutants based on the infectious copy of CSFV strain C. The biochemical properties of Erns from this cell line were indistinguishable from those of CSFV Erns. Two Erns deletion mutants were constructed, virus Flc23 and virus Flc22. Virus Flc23 encoded only the utmost N- and C-terminal amino acids of Erns (deletion of 215 amino acids) to retain the original protease cleavage sites. Virus Flc22 is not recognized by a panel of Erns antibodies, due to a deletion of 66 amino acids in Erns. The Erns deletion mutants Flc22 and Flc23 could be rescued in vitro only on the complementing SK6c26 cells. These rescued viruses could infect and replicate in SK6 cells but did not yield infectious virus. Virus neutralization by Erns-specific antibodies was similar for the wild-type virus and the recombinant viruses, indicating that Erns from SK6c26 cells was incorporated in the viral particles. Pigs vaccinated with Flc22 or Flc23 were protected against a challenge with a lethal dose of CSFV strain Brescia. This is the first demonstration of trans-complementation of defective pestivirus RNA with a pestiviral structural protein and opens new ways to develop nontransmissible modified live pestivirus vaccines. In addition, the absence of (the antigenic part of) Erns in the recombinant viral particles can be used to differentiate between infected and vaccinated animals.


Vaccine | 2002

Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of Erns or E2 of CSFV

H.G.P. van Gennip; A. Bouma; P.A. van Rijn; M.N. Widjojoatmodjo; R. J. M. Moormann

Three mutants with deletions in the E2 gene of the infectious DNA copy of the classical swine fever virus (CSFV) strain-C were constructed: one missing the B/C domain of CSFV-E2 between amino acids (aa) 693 and 746, one missing the A domain between aa 800 and 864, and one missing the complete E2 between aa 689 and 1062. All three CSFV-E2 deletion mutants were unable to generate viable virus, indicating that each of the antigenic domains of E2 is essential for viability of CSFV. To rescue the CSFV-E2 deletion mutants SK6 cell lines constitutively expressing glycoprotein E2 of CSFV were generated. The rescued viruses infected and replicated in SK6 cells as demonstrated by expression of viral proteins, but this primary infection did not result in reproduction of infectious virus. Thus, these E2 complemented viruses are considered non-transmissible. In previous experiments, we showed that simultaneous injection of E(rns) complemented virus (Flc23) via intradermal (ID), intramuscular (IM) or intranasal (IN) routes conferred protection to pigs against a lethal challenge with CSFV [J. Virol. 74 (2000) 2973]. Here, we evaluate different routes of application (ID, IM or IN) with E(rns) complemented virus Flc23 in order to find the best route for complemented CSFVs. Intradermal injection with Flc23 protected pigs against a lethal CSFV challenge, whereas intramuscular injection induced partial protection, and intranasal injection did not mediate a protective immune response in pigs at all. We used the intradermal route of vaccination to test the E2 complemented viruses. Vaccination of pigs via the intradermal route with the E2 complemented CSFVs also resulted in the induction of antibodies and in (partial) protection against CSFV challenge. Pigs vaccinated with E2 complemented virus Flc4 (deletion B/C domain) survived a lethal CSFV challenge, whereas partial protection was induced in pigs vaccinated with Flc47 (deletion E2) or Flc48 (deletion A domain) E2 complemented viruses. Serological data demonstrate that these E2 complemented mutant viruses are, in combination with well known diagnostic tests based on E2, potential marker vaccines for CSF.


Journal of General Virology | 1993

Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia

P.A. van Rijn; H.G.P. van Gennip; E. J. de Meijer; R. J. M. Moormann

Four antigenic domains (A, B, C and D) on envelope glycoprotein E1 (gp51-54) of hog cholera virus strain Brescia have been specified by using 13 monoclonal antibodies (MAbs) that recognize non-conserved and conserved epitopes. It was shown that the non-conserved epitopes map to the N-terminal half of E1 by analysis of chimeric E1 proteins of strains Brescia and C. Conserved epitopes, however, could not be mapped using this approach. Here we describe mapping of both conserved and non-conserved epitopes on E1 by the use of an extensive set of single and double deletion mutants of E1 of strain Brescia. Deletion mutants were transiently expressed in COS1 cells and analysed by immunostaining with the 13 MAbs directed against strain Brescia and four MAbs directed against strain C. All MAbs bound to the N-terminal half of E1, i.e. amino acids 690 to 866 encoded by the sequence of strain Brescia. Domain B and one epitope in domain C are located between residues 690 and 773. Other epitopes in domain C are located on an extended region, i.e. between residues 690 and 800. Conserved epitopes of domain A are mapped between residues 766 and 866, whereas the only non-conserved epitope in this domain is located between residues 766 and 813. Domain D, represented by one MAb, is located in the same region as this non-conserved epitope of domain A, i.e. between residues 766 and 800. The results suggest the presence of two distinct antigenic units on E1, one consisting of domains B and C and the other consisting of domain A.


Vaccine | 1999

An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV)

P.A. van Rijn; H.G.P. van Gennip; R. J. M. Moormann

Envelope glycoprotein E2 is the most immunogenic protein of classical swine fever virus (CSFV). In a proposed model of the antigenic structure of E2, the N-terminal half of E2 forms two independent structural antigenic units, A and BC. E2 without transmembrane region (E2-TMR) is expressed and secreted into the medium of insect cells by use of the baculovirus expression system. The immune response induced by E2 protects pigs against CSFV. Recently, we showed that the protective immune response to a homologous CSFV challenge can be induced by a single unit, A or BC, of E2. An indirect blocking ELISA, or complex trapping blocking assay (CTB) based on both units is routinely used worldwide for serological diagnosis of CSFV infections. Here we show that E2-TMR is secreted into the medium as a homodimer. This E2 homodimer was used to develop a CTB detecting antibodies directed against one immunogenic unit of E2. Thus, the protective immune response induced by E2 containing one unit was not detected with a modified CTB based on the other unit, whereas immune responses induced by a variety of low virulent CSFV strains were detected with such a modified CTB. These results indicate that a deletion E2 protein in combination with a modified CTB are feasible as CSF marker vaccine and accompanying differentiating diagnostic test.


Journal of Virology | 2001

Interaction of Classical Swine Fever Virus with Membrane-Associated Heparan Sulfate: Role for Virus Replication In Vivo and Virulence

Marcel Hulst; H.G.P. van Gennip; A. C. Vlot; E. Schooten; A.J. de Smit; R. J. M. Moormann

ABSTRACT Passage of native classical swine fever virus (CSFV) in cultured swine kidney cells (SK6 cells) selects virus variants that attach to the surface of cells by interaction with membrane-associated heparan sulfate (HS). A Ser-to-Arg change in the C terminus of envelope glycoprotein Erns (amino acid 476 in the open reading frame of CSFV) is responsible for selection of these HS-binding virus variants (M. M. Hulst, H. G. P. van Gennip, and R. J. M. Moormann, J. Virol. 74:9553–9561, 2000). In this investigation we studied the role of binding of CSFV to HS in vivo. Using reverse genetics, an HS-independent recombinant virus (S-ST virus) with Ser476 and an HS-dependent recombinant virus (S-RT virus) with Arg476 were constructed. Animal experiments indicated that this adaptive Ser-to-Arg mutation had no effect on the virulence of CSFV. Analysis of viruses reisolated from pigs infected with these recombinant viruses indicated that replication in vivo introduced no mutations in the genes of the envelope proteins Erns, E1, and E2. However, the blood of one of the three pigs infected with the S-RT virus contained also a low level of virus particles that, when grown under a methylcellulose overlay, produced relative large plaques, characteristic of an HS-independent virus. Sequence analysis of such a large-plaque phenotype showed that Arg476 was mutated back to Ser476. Removal of HS from the cell surface and addition of heparin to the medium inhibited infection of cultured (SK6) and primary swine kidney cells with S-ST virus reisolated from pigs by about 70% whereas infection with the administered S-ST recombinant virus produced in SK6 cells was not affected. Furthermore, Erns S-ST protein, produced in insect cells, could bind to immobilized heparin and to HS chains on the surface of SK6 cells. These results indicated that S-ST virus generated in pigs is able to infect cells by an HS-dependent mechanism. Binding of concanavalin A (ConA) to virus particles stimulated the infection of SK6 cells with S-ST virus produced in these cells by 12-fold; in contrast, ConA stimulated infection with S-ST virus generated in pigs no more than 3-fold. This suggests that the surface properties of S-ST virus reisolated from pigs are distinct from those of S-ST virus produced in cell culture. We postulate that due to these surface properties, in vivo-generated CSFV is able to infect cells by an HS-dependent mechanism. Infection studies with the HS-dependent S-RT virus, however, indicated that interaction with HS did not mediate infection of lung macrophages, indicating that alternative receptors are also involved in the attachment of CSFV to cells.


Journal of Virology | 2004

Determinants of Virulence of Classical Swine Fever Virus Strain Brescia

H.G.P. van Gennip; A. C. Vlot; Marcel Hulst; A.J. de Smit; R. J. M. Moormann

ABSTRACT Two related classical swine fever virus (CSFV) strain Brescia clones were isolated from blood samples from an infected pig. Virus C1.1.1 is a cell-adapted avirulent variant, whereas CoBrB is a virulent variant. Sequence analysis revealed 29 nucleic acid mutations in C1.1.1, resulting in 9 amino acid substitutions compared to the sequence of CoBrB 476R. Using reverse genetics, parts of the genomes of these viruses, which contain differences that lead to amino acid changes, were exchanged. Animal experiments with chimeric viruses derived from C1.1.1 and CoBrB 476R showed that a combination of amino acid changes in the structural and nonstructural regions reduced the virulence of CSFV in pigs. Moreover, the presence of a Leu at position 710 in structural envelope protein E2 seemed to be an important factor in the virulence of the virus. Changing the Leu at position 710 in the CoBrB 476S variant into a His residue did not affect virulence. However, the 710His in the C1.1.1/CoBrB virus, together with adaptive mutations 276R, 476R, and 477I in Erns, resulted in reduced virulence in pigs. These results indicated that mutations in Erns and E2 alone do not determine virulence in pigs. The results of in vitro experiments suggested that a high affinity for heparan sulfate of C1.1.1 Erns may reduce the spread of the C1.1.1/CoBrB virus in pigs and together with the altered surface structure of E2 caused by the 710L→H mutation may result in a less efficient infection of specific target cells in pigs. Both these features contributed to the attenuation of the C1.1.1/CoBrB virus in vivo.


Journal of Virological Methods | 1999

Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase.

H.G.P. van Gennip; P.A. van Rijn; M.N. Widjojoatmodjo; R. J. M. Moormann

A new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low. To improve reverse genetics for CSFV, a stable swine kidney cell line was established that expresses cytoplasmic bacteriophage T7 RNA polymerase (SK6.T7). A 200-fold increased virus titre was obtained from SK6.T7 cells transfected with linearized full-length cDNA compared to in vitro transcribed RNA, whereas transfection of circular full-length cDNA resulted in 20-fold increased virus titres. Viruses generated on the SK6.T7 cells are indistinguishable from the viruses generated by the classical reverse genetic procedures. These results show the improved recovery of infectious CSFV directly from full-length cDNAs. Furthermore, the reverse genetic procedures are simplified to a faster, one step protocol. We conclude that the SK6.T7 cell line will be a valuable tool for recovering mutant CSFV and will contribute to future pestivirus research.


Journal of General Virology | 2014

Bluetongue virus without NS3/NS3a expression is not virulent and protects against virulent bluetongue virus challenge.

Femke Feenstra; H.G.P. van Gennip; Mieke A. Maris-Veldhuis; E. Verheij; P.A. van Rijn

Bluetongue is a disease in ruminants caused by the bluetongue virus (BTV), and is spread by Culicoides biting midges. Bluetongue outbreaks cause huge economic losses and death in sheep in several parts of the world. The most effective measure to control BTV is vaccination. However, both commercially available vaccines and recently developed vaccine candidates have several shortcomings. Therefore, we generated and tested next-generation vaccines for bluetongue based on the backbone of a laboratory-adapted strain of BTV-1, avirulent BTV-6 or virulent BTV-8. All vaccine candidates were serotyped with VP2 of BTV-8 and did not express NS3/NS3a non-structural proteins, due to induced deletions in the NS3/NS3a ORF. Sheep were vaccinated once with one of these vaccine candidates and were challenged with virulent BTV-8 3 weeks after vaccination. The NS3/NS3a knockout mutation caused complete avirulence for all three BTV backbones, including for virulent BTV-8, indicating that safety is associated with the NS3/NS3a knockout phenotype. Viraemia of vaccine virus was not detected using sensitive PCR diagnostics. Apparently, the vaccine viruses replicated only locally, which will minimize spread by the insect vector. In particular, the vaccine based on the BTV-6 backbone protected against disease and prevented viraemia of challenge virus, showing the efficacy of this vaccine candidate. The lack of NS3/NS3a expression potentially enables the differentiation of infected from vaccinated animals, which is important for monitoring virus spread in vaccinated livestock. The disabled infectious single-animal vaccine for bluetongue presented here is very promising and will be the subject of future studies.

Collaboration


Dive into the H.G.P. van Gennip's collaboration.

Top Co-Authors

Avatar

P.A. van Rijn

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marcel Hulst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.A. van Rijn

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. T. Hesselink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

E. Verheij

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

E.P. de Kluijver

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Boonstra

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge