Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. J. Grabe is active.

Publication


Featured researches published by H. J. Grabe.


Molecular Psychiatry | 2017

Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group

Lianne Schmaal; D. P. Hibar; Philipp G. Sämann; Geoffrey B. Hall; Bernhard T. Baune; Neda Jahanshad; J W Cheung; T G M van Erp; Daniel Bos; M. A. Ikram; Meike W. Vernooij; Wiro J. Niessen; Henning Tiemeier; A Hofman; K. Wittfeld; H. J. Grabe; Deborah Janowitz; R. Bülow; M. Selonke; Henry Völzke; Dominik Grotegerd; Udo Dannlowski; V. Arolt; Nils Opel; W Heindel; H Kugel; D. Hoehn; Michael Czisch; Baptiste Couvy-Duchesne; Miguel E. Rentería

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.


Molecular Psychiatry | 2016

Meta-analysis of genome-wide association studies of anxiety disorders

Takeshi Otowa; Karin Hek; Misun Lee; Enda M. Byrne; Saira Saeed Mirza; Michel G. Nivard; Timothy B. Bigdeli; Steven H. Aggen; Daniel E. Adkins; Aaron R. Wolen; Ayman H. Fanous; Matthew C. Keller; Enrique Castelao; Zoltán Kutalik; S. V. der Auwera; Georg Homuth; Matthias Nauck; Alexander Teumer; Y. Milaneschi; J.J. Hottenga; Nese Direk; A. Hofman; A.G. Uitterlinden; Cornelis L. Mulder; Anjali K. Henders; Sarah E. Medland; S. D. Gordon; A. C. Heath; P. A. F. Madden; M. L. Pergadia

Anxiety disorders (ADs), namely generalized AD, panic disorder and phobias, are common, etiologically complex conditions with a partially genetic basis. Despite differing on diagnostic definitions based on clinical presentation, ADs likely represent various expressions of an underlying common diathesis of abnormal regulation of basic threat–response systems. We conducted genome-wide association analyses in nine samples of European ancestry from seven large, independent studies. To identify genetic variants contributing to genetic susceptibility shared across interview-generated DSM-based ADs, we applied two phenotypic approaches: (1) comparisons between categorical AD cases and supernormal controls, and (2) quantitative phenotypic factor scores (FS) derived from a multivariate analysis combining information across the clinical phenotypes. We used logistic and linear regression, respectively, to analyze the association between these phenotypes and genome-wide single nucleotide polymorphisms. Meta-analysis for each phenotype combined results across the nine samples for over 18 000 unrelated individuals. Each meta-analysis identified a different genome-wide significant region, with the following markers showing the strongest association: for case–control contrasts, rs1709393 located in an uncharacterized non-coding RNA locus on chromosomal band 3q12.3 (P=1.65 × 10−8); for FS, rs1067327 within CAMKMT encoding the calmodulin-lysine N-methyltransferase on chromosomal band 2p21 (P=2.86 × 10−9). Independent replication and further exploration of these findings are needed to more fully understand the role of these variants in risk and expression of ADs.


Molecular Psychiatry | 2015

Novel loci associated with usual sleep duration: The CHARGE Consortium Genome-Wide Association Study

Daniel J. Gottlieb; Karin Hek; Ting Hsu Chen; Nathaniel F. Watson; G. Eiriksdottir; Enda M. Byrne; Marilyn C. Cornelis; Simon C. Warby; S. Bandinelli; Lynn Cherkas; Daniel S. Evans; H. J. Grabe; Jari Lahti; Man Li; Terho Lehtimäki; Thomas Lumley; Kristin D. Marciante; Louis Pérusse; Bruce M. Psaty; John Robbins; Greg Tranah; Jacqueline M. Vink; Jemma B. Wilk; Jeanette M. Stafford; Claire Bellis; Reiner Biffar; Claude Bouchard; Brian E. Cade; Gary C. Curhan; Johan G. Eriksson

Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10−4). The strongest combined association was at rs1823125 (P=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.


Molecular Psychiatry | 2018

Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression

Robert Culverhouse; Nancy L. Saccone; Amy C. Horton; Yinjiao Ma; Kaarin J. Anstey; Tobias Banaschewski; Margit Burmeister; Sarah Cohen-Woods; Bruno Etain; Helen L. Fisher; Noreen Goldman; Sébastien Guillaume; John Horwood; Gabriella Juhasz; Kathryn J. Lester; Laura Mandelli; Christel M. Middeldorp; E. Olié; Sandra Villafuerte; Tracy Air; Ricardo Araya; Lucy Bowes; Richard Burns; Enda M. Byrne; C. Coffey; William L. Coventry; K. A. B. Gawronski; Dana A. Glei; Alex Hatzimanolis; Jouke-Jan Hottenga

The hypothesis that the S allele of the 5-HTTLPR serotonin transporter promoter region is associated with increased risk of depression, but only in individuals exposed to stressful situations, has generated much interest, research and controversy since first proposed in 2003. Multiple meta-analyses combining results from heterogeneous analyses have not settled the issue. To determine the magnitude of the interaction and the conditions under which it might be observed, we performed new analyses on 31 data sets containing 38 802 European ancestry subjects genotyped for 5-HTTLPR and assessed for depression and childhood maltreatment or other stressful life events, and meta-analysed the results. Analyses targeted two stressors (narrow, broad) and two depression outcomes (current, lifetime). All groups that published on this topic prior to the initiation of our study and met the assessment and sample size criteria were invited to participate. Additional groups, identified by consortium members or self-identified in response to our protocol (published prior to the start of analysis) with qualifying unpublished data, were also invited to participate. A uniform data analysis script implementing the protocol was executed by each of the consortium members. Our findings do not support the interaction hypothesis. We found no subgroups or variable definitions for which an interaction between stress and 5-HTTLPR genotype was statistically significant. In contrast, our findings for the main effects of life stressors (strong risk factor) and 5-HTTLPR genotype (no impact on risk) are strikingly consistent across our contributing studies, the original study reporting the interaction and subsequent meta-analyses. Our conclusion is that if an interaction exists in which the S allele of 5-HTTLPR increases risk of depression only in stressed individuals, then it is not broadly generalisable, but must be of modest effect size and only observable in limited situations.


WOS | 2015

Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study

Daniel J. Gottlieb; Karin Hek; T-h Chen; Nathaniel F. Watson; G. Eiriksdottir; Enda M. Byrne; Marilyn C. Cornelis; Simon C. Warby; S. Bandinelli; Lynn Cherkas; Daniel S. Evans; H. J. Grabe; Jari Lahti; Mushan Li; Terho Lehtimäki; Thomas Lumley; Kristin D. Marciante; Pérusse L; Bruce M. Psaty; John A. Robbins; Greg Tranah; Jacqueline M. Vink; Jemma B. Wilk; Jeanette M. Stafford; Claire Bellis; Reiner Biffar; Claude Bouchard; Brian E. Cade; Gary C. Curhan; Johan G. Eriksson

Usual sleep duration is a heritable trait correlated with psychiatric morbidity, cardiometabolic disease and mortality, although little is known about the genetic variants influencing this trait. A genome-wide association study (GWAS) of usual sleep duration was conducted using 18 population-based cohorts totaling 47 180 individuals of European ancestry. Genome-wide significant association was identified at two loci. The strongest is located on chromosome 2, in an intergenic region 35- to 80-kb upstream from the thyroid-specific transcription factor PAX8 (lowest P=1.1 × 10−9). This finding was replicated in an African-American sample of 4771 individuals (lowest P=9.3 × 10−4). The strongest combined association was at rs1823125 (P=1.5 × 10−10, minor allele frequency 0.26 in the discovery sample, 0.12 in the replication sample), with each copy of the minor allele associated with a sleep duration 3.1 min longer per night. The alleles associated with longer sleep duration were associated in previous GWAS with a more favorable metabolic profile and a lower risk of attention deficit hyperactivity disorder. Understanding the mechanisms underlying these associations may help elucidate biological mechanisms influencing sleep duration and its association with psychiatric, metabolic and cardiovascular disease.


Neuropsychopharmacology | 2011

DIRAS2 is Associated with Adult ADHD, Related Traits, and Co-Morbid Disorders

Andreas Reif; T. Trang Nguyen; Lena Weißflog; Christian Jacob; Marcel Romanos; Tobias J. Renner; Henriette N. Buttenschøn; Sarah Kittel-Schneider; Alexandra Gessner; Heike Weber; Maria Neuner; Silke Gross-Lesch; Karin Zamzow; Susanne Kreiker; Susanne Walitza; Jobst Meyer; Christine M. Freitag; Rosa Bosch; M. Casas; Nuria Gómez; Marta Ribasés; Mònica Bayés; Jan K. Buitelaar; Lambertus A. Kiemeney; J. J. Sandra Kooij; Cees C Kan; Martine Hoogman; Stefan Johansson; Kaya Kvarme Jacobsen; Per M. Knappskog

Several linkage analyses implicated the chromosome 9q22 region in attention deficit/hyperactivity disorder (ADHD), a neurodevelopmental disease with remarkable persistence into adulthood. This locus contains the brain-expressed GTP-binding RAS-like 2 gene (DIRAS2) thought to regulate neurogenesis. As DIRAS2 is a positional and functional ADHD candidate gene, we conducted an association study in 600 patients suffering from adult ADHD (aADHD) and 420 controls. Replication samples consisted of 1035 aADHD patients and 1381 controls, as well as 166 families with a child affected from childhood ADHD. Given the high degree of co-morbidity with ADHD, we also investigated patients suffering from bipolar disorder (BD) (n=336) or personality disorders (PDs) (n=622). Twelve single-nucleotide polymorphisms (SNPs) covering the structural gene and the transcriptional control region of DIRAS2 were analyzed. Four SNPs and two haplotype blocks showed evidence of association with ADHD, with nominal p-values ranging from p=0.006 to p=0.05. In the adult replication samples, we obtained a consistent effect of rs1412005 and of a risk haplotype containing the promoter region (p=0.026). Meta-analysis resulted in a significant common OR of 1.12 (p=0.04) for rs1412005 and confirmed association with the promoter risk haplotype (OR=1.45, p=0.0003). Subsequent analysis in nuclear families with childhood ADHD again showed an association of the promoter haplotype block (p=0.02). rs1412005 also increased risk toward BD (p=0.026) and cluster B PD (p=0.031). Additional SNPs showed association with personality scores (p=0.008–0.048). Converging lines of evidence implicate genetic variance in the promoter region of DIRAS2 in the etiology of ADHD and co-morbid impulsive disorders.


Translational Psychiatry | 2016

Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

Mohamad Habes; Deborah Janowitz; Guray Erus; Jon B. Toledo; Susan M. Resnick; Jimit Doshi; S. Van der Auwera; Katharina Wittfeld; Katrin Hegenscheid; Norbert Hosten; R Biffar; Georg Homuth; Henry Völzke; H. J. Grabe; W Hoffmann; Christos Davatzikos

We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20–90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer’s Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.


Embo Molecular Medicine | 2015

Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes

Beata Stepniak; Anne Kästner; Giulia Poggi; Marina Mitjans; Martin Begemann; Annette M. Hartmann; Sandra Van der Auwera; Farahnaz Sananbenesi; Dilja Krueger-Burg; Gabriela Matuszko; Cornelia Brosi; Georg Homuth; Henry Völzke; Fritz Benseler; Claudia Bagni; Utz Fischer; Alexander Dityatev; H. J. Grabe; Dan Rujescu; Andre Fischer; Hannelore Ehrenreich

Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high‐ versus low‐risk constellation regarding the accumulation model. Thereby, the brain‐expressed miR‐181 species emerged as potential “umbrella regulator”, with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.


PLOS ONE | 2014

Mapping the Genetic Architecture of Gene Regulation in Whole Blood

Katharina Schramm; Carola Marzi; Maren Carstensen; Eva Reinmaa; Reiner Biffar; Gertrud Eckstein; Christian Gieger; H. J. Grabe; Georg Homuth; Gabriele Kastenmüller; Reedik Mägi; Andres Metspalu; Evelin Mihailov; Annette Peters; Astrid Petersmann; Michael Roden; Konstantin Strauch; Karsten Suhre; Alexander Teumer; Uwe Völker; Henry Völzke; Rui Wang-Sattler; Melanie Waldenberger; Thomas Meitinger; Thomas Illig; Christian Herder; Harald Grallert; Holger Prokisch

Background We aimed to assess whether whole blood expression quantitative trait loci (eQTLs) with effects in cis and trans are robust and can be used to identify regulatory pathways affecting disease susceptibility. Materials and Methods We performed whole-genome eQTL analyses in 890 participants of the KORA F4 study and in two independent replication samples (SHIP-TREND, N = 976 and EGCUT, N = 842) using linear regression models and Bonferroni correction. Results In the KORA F4 study, 4,116 cis-eQTLs (defined as SNP-probe pairs where the SNP is located within a 500 kb window around the transcription unit) and 94 trans-eQTLs reached genome-wide significance and overall 91% (92% of cis-, 84% of trans-eQTLs) were confirmed in at least one of the two replication studies. Different study designs including distinct laboratory reagents (PAXgene™ vs. Tempus™ tubes) did not affect reproducibility (separate overall replication overlap: 78% and 82%). Immune response pathways were enriched in cis- and trans-eQTLs and significant cis-eQTLs were partly coexistent in other tissues (cross-tissue similarity 40–70%). Furthermore, four chromosomal regions displayed simultaneous impact on multiple gene expression levels in trans, and 746 eQTL-SNPs have been previously reported to have clinical relevance. We demonstrated cross-associations between eQTL-SNPs, gene expression levels in trans, and clinical phenotypes as well as a link between eQTLs and human metabolic traits via modification of gene regulation in cis. Conclusions Our data suggest that whole blood is a robust tissue for eQTL analysis and may be used both for biomarker studies and to enhance our understanding of molecular mechanisms underlying gene-disease associations.


Genes, Brain and Behavior | 2014

A genome-wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus

Danchao Cai; Hubert M. Fonteijn; Tulio Guadalupe; Marcel P. Zwiers; Katharina Wittfeld; Alexander Teumer; Martine Hoogman; Alejandro Arias-Vasquez; Yufang Yang; Jan K. Buitelaar; Guillén Fernández; Han G. Brunner; H. van Bokhoven; Barbara Franke; K. Hegenscheid; Georg Homuth; Simon E. Fisher; H. J. Grabe; Clyde Francks; Peter Hagoort

Heschls gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome‐wide association scan (GWAS) meta‐analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P = 2.77 × 10−7). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P = 2.27 × 10−6) and rs143000161 near gene COBLL1 (2q24.3; P = 2.40 × 10−6) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X‐linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P = 2.38 × 10−6). This is the first molecular genetic analysis of variability in HG morphology.

Collaboration


Dive into the H. J. Grabe's collaboration.

Top Co-Authors

Avatar

Henry Völzke

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Georg Homuth

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel E. Rentería

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lianne Schmaal

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

T G M van Erp

University of California

View shared research outputs
Top Co-Authors

Avatar

A. Block

University of Potsdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge