H. J. Pletsch
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. J. Pletsch.
The Astrophysical Journal | 2012
Roger W. Romani; Alexei V. Filippenko; Jeffrey M. Silverman; S. Bradley Cenko; J. Greiner; Jonathan Elliott; H. J. Pletsch
We have obtained initial spectroscopic observations and additional photometry of the newly discovered Pb = 94 minute γ-ray black-widow pulsar PSR J1311–3430. The Keck spectra show a He-dominated, nearly H-free photosphere and a large radial-velocity amplitude of 609.5 ± 7.5 km s–1. Simultaneous seven-color GROND photometry further probes the heating of this companion, and shows the presence of a flaring infrared excess. We have modeled the quiescent light curve, constraining the orbital inclination and masses. Simple heated light-curve fits give M NS = 2.7 M ☉, but show systematic light-curve differences. Adding extra components allows a larger mass range to be fit, but all viable solutions have M NS > 2.1 M ☉. If confirmed, such a large M NS substantially constrains the equation of state of matter at supernuclear densities.
Science | 2010
B. Knispel; B. Allen; J. M. Cordes; J. S. Deneva; David P. Anderson; C. Aulbert; N. D. R. Bhat; O. Bock; S. Bogdanov; A. Brazier; F. Camilo; D. J. Champion; S. Chatterjee; F. Crawford; Paul Demorest; H. Fehrmann; P. C. C. Freire; M. E. Gonzalez; D. Hammer; J. W. T. Hessels; F. A. Jenet; L. Kasian; Victoria M. Kaspi; M. Kramer; P. Lazarus; J. van Leeuwen; D. R. Lorimer; A. G. Lyne; B. Machenschalk; M. A. McLaughlin
Einstein@Home, a distributed computing project, discovered a rare, isolated pulsar with a low magnetic field. Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722’s pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.
Classical and Quantum Gravity | 2008
K. Wette; B. J. Owen; B. Allen; M. Ashley; J. Betzwieser; N. Christensen; T. D. Creighton; V. Dergachev; I. Gholami; E. Goetz; R. Gustafson; D. Hammer; D. I. Jones; Badri Krishnan; M. Landry; B. Machenschalk; D. E. McClelland; G. Mendell; C. Messenger; M. A. Papa; P. Patel; M. Pitkin; H. J. Pletsch; R. Prix; K. Riles; L. Sancho De La Jordana; S. M. Scott; A. M. Sintes; M. Trias; James Whelan
We describe a search underway for periodic gravitational waves from the central compact object in the supernova remnant Cassiopeia A. The object is the youngest likely neutron star in the Galaxy. Its position is well known, but the object does not pulse in any electromagnetic radiation band and thus presents a challenge in searching the parameter space of frequency and frequency derivatives. We estimate that a fully coherent search can, with a reasonable amount of time on a computing cluster, achieve a sensitivity at which it is theoretically possible (though not likely) to observe a signal even with the initial LIGO noise spectrum. Cassiopeia A is only the second object after the Crab pulsar for which this is true. The search method described here can also obtain interesting results for similar objects with current LIGO sensitivity.
The Astrophysical Journal | 2013
Paul S. Ray; Scott M. Ransom; C. C. Cheung; M. Giroletti; I. Cognard; F. Camilo; Bhaswati Bhattacharyya; J. Roy; Roger W. Romani; E. C. Ferrara; L. Guillemot; S. Johnston; M. J. Keith; M. Kerr; M. Kramer; H. J. Pletsch; P. M. Saz Parkinson; K. S. Wood
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
The Astrophysical Journal | 2012
H. J. Pletsch; L. Guillemot; B. Allen; M. Kramer; C. Aulbert; H. Fehrmann; Matthew G. Baring; F. Camilo; Patrizia A. Caraveo; J. E. Grove; M. Kerr; M. Marelli; Scott M. Ransom; Paul S. Ray; P. M. Saz Parkinson
We report the discovery of PSR J1838−0537, a gamma-ray pulsar found through a blind search of data from the Fermi Large Area Telescope (LAT). The pulsar has a spin frequency of 6.9 Hz and a frequency derivative of −2.2 × 10 −11 Hz s −1 , implying a young characteristic age of 4970 yr and a large spin-down power of 5.9 × 10 36 erg s −1 . Follow-up observations with radio telescopes detected no pulsations; thus PSR J1838−0537 appears radio-quiet as viewed from Earth. In 2009 September the pulsar suffered the largest glitch so far seen in any gamma-ray-only pulsar, causing a relative increase in spin frequency of about 5.5 × 10 −6 . After the glitch, during a putative recovery period, the timing analysis is complicated by the sparsity of the LAT photon data, the weakness of the pulsations, and the reduction in average exposure from a coincidental, contemporaneous change in LAT’s sky-survey observing pattern. The pulsar’s sky position is coincident with the spatially extended TeV source HESS J1841−055 detected by the High Energy Stereoscopic System (H.E.S.S.). The inferred energetics suggest that HESS J1841−055 contains a pulsar wind nebula powered by the pulsar.
Physical Review Letters | 2009
H. J. Pletsch; B. Allen
Fully coherent searches (over realistic ranges of parameter space and year-long observation times) for unknown sources of continuous gravitational waves are computationally prohibitive. Less expensive hierarchical searches divide the data into shorter segments which are analyzed coherently, then detection statistics from different segments are combined incoherently. The novel method presented here solves the long-standing problem of how best to do the incoherent combination. The optimal solution exploits large-scale parameter-space correlations in the coherent detection statistic. Application to simulated data shows dramatic sensitivity improvements compared with previously available (ad hoc) methods, increasing the spatial volume probed by more than 2 orders of magnitude at lower computational cost.
The Astrophysical Journal | 2015
T. J. Johnson; Paul S. Ray; J. Roy; C. C. Cheung; A. K. Harding; H. J. Pletsch; Stanislav Fort; F. Camilo; J. Deneva; Bhaswati Bhattacharyya; B. W. Stappers; M. Kerr
The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5
The Astrophysical Journal | 2011
B. Knispel; P. Lazarus; B. Allen; David P. Anderson; C. Aulbert; N. D. R. Bhat; O. Bock; S. Bogdanov; A. Brazier; F. Camilo; S. Chatterjee; J. M. Cordes; F. Crawford; J. S. Deneva; G. Desvignes; H. Fehrmann; P. C. C. Freire; D. Hammer; J. W. T. Hessels; F. A. Jenet; V. M. Kaspi; M. Kramer; J. van Leeuwen; D. R. Lorimer; A. G. Lyne; B. Machenschalk; M. A. McLaughlin; C. Messenger; David J. Nice; M. A. Papa
\sigma
The Astrophysical Journal | 2013
H. J. Pletsch; L. Guillemot; B. Allen; David P. Anderson; C. Aulbert; O. Bock; D. J. Champion; H. B. Eggenstein; H. Fehrmann; D. Hammer; R. Karuppusamy; M. J. Keith; M. Kramer; B. Machenschalk; C. Ng; M. A. Papa; Paul S. Ray; X. Siemens
) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.
The Astrophysical Journal | 2017
Colin J. Clark; J. Wu; H. J. Pletsch; L. Guillemot; B. Allen; C. Aulbert; Christian Beer; O. Bock; A. Cuéllar; H. B. Eggenstein; H. Fehrmann; M. Kramer; B. Machenschalk; L. Nieder
We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital