Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. J. Schluesener is active.

Publication


Featured researches published by H. J. Schluesener.


Acta Neuropathologica | 2001

Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude.

Michel Mittelbronn; Klaus Dietz; H. J. Schluesener; Richard Meyermann

Abstract. Although microglia are considered to be a sensitive sensor for pathological processes in the central nervous system, there are only a few studies about the distribution and density of microglia in the normal human brain. Therefore, a study of local density of microglial cells was conducted by investigating 20 normal human brains with no clinical neurological symptoms or diseases and no neuropathological alterations. Microglial cells were visualized by immunolabeling of proteins which are known to be expressed either constitutively or facultatively, such as CD68, major histocompatibility complex class II (MHC-II), leukocyte common antigen (LCA), leukocyte chemotactic factor (LCF), macrophage inhibitory factor-related protein (MRP) 8, MRP14, CD4 and allograft-inflammatory factor-1 (AIF-1). CD68, MHC-II and AIF-1 showed the highest densities with significant regional differences ranging from 0.5% to 16.6% of all cells in the brain parenchyma with significantly more microglia in white than in gray matter. LCF and LCA showed a similar pattern of distribution as the proteins described above, but with lower percentages of microglial cells. CD4 was not found in the brain parenchyma. We conclude that CD68, MHC-II and AIF-1 define the main microglial cell population, whereas LCF and LCA are expressed by a subpopulation of microglial cells. The brains showed no or a negligible vascular expression of MRP8 and MRP14. Information about the local microglia density in the normal human brain can serve as a reference for the evaluation of pathological microglial responses.


Journal of Neuroimmunology | 2001

Human focal cerebral infarctions induce differential lesional interleukin-16 (IL-16) expression confined to infiltrating granulocytes, CD8+ T-lymphocytes and activated microglia/macrophages

Jan M. Schwab; T. D. Nguyen; Richard Meyermann; H. J. Schluesener

Focal cerebral ischemia elicits a strong inflammatory response which readily participates in lipid oxygenation, edema formation, apoptotic cell death and tissue remodeling. Within these conditions, cytokines are key players of cell activation and are crucial for delayed mechanisms of ischemic damage. Mature IL-16 is an immunomodulatory cytokine, exerting CD4 dependent and independent effects and is characterized by chemotactic activity, induction of early gene phosphorylation, stimulation of pro-inflammatory IL-1beta, IL-6, TNFalpha expression in monocytic cells and also modulates apoptosis. We have now analyzed expression of IL-16 in 20 brains of patients following focal cerebral infarctions (FCI, n=20). Compared to normal control brains (n=3), IL-16 was expressed by infiltrating immune cells such as neutrophils, CD8+ lymphocytes and activated CD68+ microglia/macrophages accumulating in lesion associated reactive zones and in peri-vascular regions. IL-16+ cells accumulated significantly (P<0.0001) in the necrotic lesion and at bordering peri-lesional areas at day 1-2 reaching maximum levels at day 3-4 (P<0.0001). Also, peri-vascular IL-16+ cells reached maximum levels at day 3-4 (P<0.0001) following infarction and decreased after several weeks. During the early microglial activation period, IL-16+ microglia/macrophages coexpress the activation antigen MRP-8. The accumulation of IL-16+ granulocytes, IL-16+, CD8+ lymphocytes and activated IL-16+, CD68+, CD4- microglia/macrophages, early after infarction suggest a CD4 independent, paracrine role of IL-16 in the postinjury inflammatory response, such as recruitment and activation of immune cells leading to microvessel clustering and blood-brain barrier disturbance resulting in secondary damage.


Journal of Neuroimmunology | 2000

Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury

Jan M. Schwab; K Brechtel; T. D. Nguyen; H. J. Schluesener

Acute inflammation following spinal cord injury results in secondary injury and pathological reorganisation of the central nervous system (CNS) architecture. Cyclooxygenases (Prostaglandin Endoperoxide H Synthases, PGH) are key enzymes in the conversion of arachidonic acid into prostanoids which mediate immunomodulation, mitogenesis, apoptosis, blood flow, secondary injury (lipid peroxygenation) and inflammation. Here, we report cyclooxygenase-1 (COX-1) expression following spinal cord injury. In control spinal cords, COX-1 expression was localized by immunohistochemistry to ependymal cells, some neurons, inclusive dorsal and ventral root ganglion cells, few endothelial cells but rarely to brain microglia/macrophages. In injured spinal cords, COX-1(+) microglia/macrophages accumulated highly significantly (P<0.0001) at peri-lesional areas and in the developing necrotic core early after injury. Here numbers of COX-1(+) cells remained persistently elevated up to 4 weeks following injury. Further, COX-1(+) cells were located in perivascular Virchow-Robin spaces, between spared axons and in areas of Wallerian degeneration. Double labeling experiments confirmed co-expression of COX-1 by ED-1(+) and OX-42(+) microglia/macrophages. Transiently after infarction most COX-1(+) microglia/macrophages coexpress the activation antigen OX-6 (MHC class II). However, the prolonged accumulation of COX-1(+) microglia/macrophages at the lesion site enduring the acute post injury inflammatory response points to a role of COX-1 in tissue remodeling or secondary injury. We have identified and localized persistent accumulation of COX-1 expressing cells which might be a potential pharmacological target following spinal cord injury. Therefore, we suggest that approaches based on: (i) short-term; and (ii) selective COX-2 blocking alone might not be a sufficient tool to suppress the local synthesis of prostanoids.


Acta Neuropathologica | 1999

Effects of autoantigen and dexamethasone treatment on expression of endothelial-monocyte activating polypeptide II and allograft-inflammatory factor-1 by activated macrophages and microglial cells in lesions of experimental autoimmune encephalomyelitis, neuritis and uveitis.

H. J. Schluesener; Karin Seid; Richard Meyermann

Abstract Endothelial-monocyte activating polypeptide II (EMAP II) and allograft-inflammatory factor-1 (AIF-1) are two proteins produced by activated monocytes and microglial cells. We now report expression of these factors during experimental therapy of rat neuroautoimmune diseases. Comparative analysis of two therapeutic strategies, treatment with high doses of recombinant autoantigens or with dexamethasone, revealed unexpected differences. High doses of autoantigen were most effective in experimental autoimmune encephalomyelitis and neuritis (EAE and EAN), but less effective in experimental autoimmune uveitis (EAU). Low and high doses of dexamethasone treatment greatly reduced the severity of EAE, EAN and EAU at day 11, but a relapse was observed between days 21 and 26. Only rather limited expression of EMAP II and AIF-1 is seen in the normal central nervous system (CNS). This constitutive expression is not abolished by dexamethasone treatment. In inflammatory autoimmune lesions of the rat CNS, prominent AIF-1 and EMAP II staining was seen with macrophages and monocytes. In particular, parenchymal microglial cells were now activated to express AIF-1 and EMAP II. In accordance with prevention of neurological signs, histological observations revealed that accumulation of activated monocytes expressing EMAP II and AIF-1 in the CNS or peripheral nervous system and the massive expression of these factors by parenchymal microglial cells is inhibited by high doses of autoantigen. Dexamethasone prevented or abolished local expression of EMAP II and AIF-1 at days 10–16. However, an acute and severe relapse occurred in encephalomyelitis between days 20–26. In these cases, a smoldering expression of EMAP II and AIF-1 persisting long after cessation of neurological signs was observed. Thus, expression of EMAP II and AIF-1 by infiltrating activated macrophages is a marker of disease activity and expression of these factors could be used to demonstrate ‘silent’ lesions in the CNS and prolonged microglial cell activation. Apparently, AIF-1 and EMAP II immunoreactivity are tools to stage activation of monocytes and microglial cells in inflammatory lesions.


Acta Neuropathologica | 2000

Selective accumulation of cyclooxygenase-1-expressing microglial cells/macrophages in lesions of human focal cerebral ischemia

Jan M. Schwab; T. D. Nguyen; Eckmund Postler; Richard Meyermann; H. J. Schluesener

Abstract Cyclooxygenases (COX; prostaglandin endoperoxide H synthases) are key enzymes in the conversion of arachidonic acid into prostanoids which mediate inflammation, immunomodulation, mitogenesis, ovulation, fewer, apoptosis and blood flow. Here, we report COX-1 expression following focal cerebral infarctions (FCI). In healthy control brains, COX-1 was localized by immunohistochemistry to a few endothelial cells, single neurons and rare, evenly distributed brain microglia/macrophages. In infarctioned brains, COX-1+ cells accumulated highly significantly (P < 0.0001) in peri-infarctional areas and in the developing necrotic core early after infarction. Here, cell numbers remained persistently elevated up to several months post infarction. Further, clusters of COX-1+ cells were located in perivascular regions related to the Virchow-Robin space. Double-labeling experiments confirmed co-expression of COX-1 by CD68+ microglia/macrophages. Co-expression of the activation antigens HLA-DR, -DP, -DQ (MHC class II) or the macrophage inhibitor factor-related protein MRP-8 (S100A8) by most COX-1+ microglia/macrophages was only seen early after infarction. Thus, COX-1 appeared to be expressed in microglial cells regardless of their activation state. However, the prolonged accumulation of COX-1+ microglia/macrophages restricted to peri-infarctional areas enduring the acute post-ischemic inflammatory response points to a role of COX-1 in tissue remodeling or in the pathophysiology of secondary injury. We have identified localized, accumulated COX-1 expression as a potential pharmacological target following FCI. Therefore we suggest that therapeutic approaches based on selective COX-2 blocking might ¶not be sufficient for suppressing the local synthesis of prostanoids.


Acta Neuropathologica | 1998

Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells

H. J. Schluesener; Peter G. Kremsner; Richard Meyermann

Abstract Human cerebral malaria (CM) is an often fatal infection. The cascades of signaling events resulting in tissue trauma and coma are only slowly becoming unraveled. Here we report that microglial cells – sensitive cellular sensors of threats to the central nervous system – in CM express the myeloid-related proteins MRP8 (S100A8) and MRP14 (S100A9), Ca2+-binding sensor proteins of activated monocytes. Surprisingly, microglial activation was widespread throughout the brain in white and gray matter and not limited to areas of petechial bleedings or sequestration of infected erythrocytes. Further, apoptosis/necrosis is prominent in CM; not only leukocytes appeared apoptotic, neurons also appeared damaged and DNA fragmentation was revealed by in situ nick translation. Thus, a prominent feature of human CM is activation of microglia, and analysis of these reactive microglia might further promote our understanding of CM pathology and guide development of future therapeutic intervention of the local reactive processes.


Acta Neuropathologica | 2000

Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas.

Martin H. Deininger; Karin Seid; Stefan Engel; Richard Meyermann; H. J. Schluesener

Abstract Allograft inflammatory factor-1 (AIF-1) is a Ca2+-binding peptide that constitutes a potential modulator of macrophage activation and function during the immune response of the brain. Peptides termed microglia response factor-1 or ionized calcium-binding adaptor molecule-1 have been reported to be identical with AIF-1. We have investigated the expression of AIF-1 in the rat C6 glioblastoma and 9L gliosarcoma tumor models and additionally assessed AIF-1 expression in a diverse range of human astrocytomas by immunohistochemistry. AIF-1 was expressed by activated microglial cells and a subset of infiltrating macrophages in areas of infiltrative tumor growth and in compact tumor areas in both rat and human gliomas. Double-labeling experiments in rats and humans characterized the nature and the functional status of AIF-1+ cells. AIF-1 expression was detected in cells expressing major histocompatibility complex class II molecules and in a subset of activated macrophages/microglial cells. All MRP-8+ cells coexpressed AIF-1. In humans, there was a strong correlation of AIF-1-expressing activated macrophages/microglial cells with tumor malignancy (P < 0.0001). These results suggest that AIF-1 defines a distinct subset of tumor-associated activated macrophages/ microglial cells.


Journal of Neuroimmunology | 2000

Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebral infarctions.

Eckmund Postler; A Rimner; Rudi Beschorner; H. J. Schluesener; Richard Meyermann

Allograft inflammatory factor-1 (AIF-1) is a 17-kDa-peptide identified in rat cardiac allografts undergoing chronic rejection and in activated microglial cells in inflammatory autoimune disease of the CNS. We have investigated the expression of AIF-1 in 18 autopsy cases of human focal cerebral infarction. AIF-1-positive cells show the morphology of microglia and are CD68- but not GFAP-positive. The peptide is expressed at a low level in normal brain. In infarctions, activated microglial cells in the area of glial reaction show strongly enhanced cytoplasmic immunoreactivity. The density of AIF-1-expressing cells increases during the first three days post infarction and remains elevated until chronic cystic stages. The upregulation of AIF-1-immunoreactivity precedes the rise in expression of the S-100-protein MRP-8. We conclude that AIF-1 is a sensitive marker of human microglial activation not only in inflammation but also in non-inflammatory lesions of the CNS.


Neuroscience | 2008

Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats

Zhiren Zhang; Zhi-Yuan Zhang; Uwe Fauser; H. J. Schluesener

Experimental autoimmune neuritis (EAN) is the animal model of acute inflammatory demyelinating polyradiculoneuropathy (AIDP) that is the most common subtype of Guillain-Barre syndrome (GBS). While neuropathic pain is a common symptom of GBS, its underlying mechanisms remain elusive. Central sensitization, particularly spinal glia (microglia and astrocytes) activation, is important for the initiation and maintenance of neuropathic pain. P2X(4) receptor (P2X(4)R) is an ATP-gated ion channel and its spinal up-regulation has been found to be crucial for the development of neuropathic pain following peripheral nerve injury. The initiation of mechanical allodynia in rat EAN was observed at day 9 before the onset of neurological signs. Maximal level of mechanical allodynia was observed from days 17-19 and then a slow recovery, long after the cessation of typical neurological signs of EAN, until day 37 was observed. Expression of P2X(4)R in lumbar spinal cords was studied by immunohistochemistry. P2X(4)R immunoreactivity (IR) was mainly seen in gray matter, particularly in the dorsal horn. Accumulation of P2X(4)R(+) cells in the lumbar dorsal horn was observed at day 9, reached the maximal level at day 17 and remained elevated until day 37 after immunization. Furthermore, a negative correlation between the density of P2X(4)R(+) cells in the lumbar dorsal horn with mean hind-paw withdrawal threshold in EAN rats was seen, indicating that P2X(4)R might contribute to EAN mechanical allodynia. Double staining revealed that almost all P2X(4)R(+) cells co-expressed CD68, a marker for reactive microglia, but not the astrocyte marker, glial fibrillary acidic protein (GFAP). Our data demonstrate that EAN induces mechanical allodynia and P2X(4)R expression in spinal microglia, suggesting that EAN is a good animal model for neuropathic pain in polyneuropathy and spinal microglia activation might participate in EAN-induced neuropathic pain.


Neuroscience | 2012

Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats

Zhiren Zhang; Zhi-Yuan Zhang; Yuzhang Wu; H. J. Schluesener

Valproic acid (VPA) is a short-chain branched fatty acid with anti-inflammatory, neuro-protective and axon remodeling effects. Here we have studied effects of VPA in gpMBP(68-84)-induced experimental autoimmune encephalomyelitis (EAE). Both preventive (from Day 0 to Day 18) and therapeutic (from Day 7 to Day 18 or from Day 9 to Day 19) VPA (500 mg/kg, intra-gastric) administration to EAE rats once daily greatly reduced the severity and duration of EAE, and suppressed mRNA levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-17, matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS) and transcription factor T-bet, but increased levels of IL-4 mRNA in EAE spinal cords. Furthermore, preventive VPA treatment greatly attenuated accumulation of macrophages and lymphocytes in EAE spinal cords. VPA treatment altered the cytokine milieu of lymph nodes, modulating the Th profile from Th1 and Th17 to a profile of Th2 and regulatory T cells. In addition, in vitro study showed that VPA inhibited non-specific lymphocyte proliferation in a dose-dependent manner. In summary, our data demonstrated that VPA could suppress systemic and local inflammation to improve outcome of EAE, suggesting that VPA might be a candidate for treatment of multiple sclerosis.

Collaboration


Dive into the H. J. Schluesener's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiren Zhang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. D. Nguyen

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Uwe Fauser

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Seid

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge