Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H Jin is active.

Publication


Featured researches published by H Jin.


Journal of Applied Clinical Medical Physics | 2014

Dependency of planned dose perturbation (PDP) on the spatial resolution of MapCHECK 2 detectors.

V Keeling; S Ahmad; H Jin

The purpose of this study is to determine the dependency of the planned dose perturbation (PDP) algorithm (used in Sun Nuclear 3DVH software) on spatial resolution of the MapCHECK 2 detectors. In this study, ten brain (small target), ten brain (large target), ten prostate, and ten head‐and‐neck (H&N) cases were retrospectively selected for QA measurement. IMRT validation plans were delivered using the field‐by‐field technique with the MapCHECK 2 device. The measurements were performed using standard detector density (standard resolution; SR) and a doubled detector density (high resolution; HR) by merging regular with shifted measurements. SR and HR measurements were fed into the 3DVH software and ROI (region of interest), planning target volume (PTV), and organ at risk (OAR)) dose statistics (D95,Dmean. and Dmax) were determined for each. Differences of the dose statistics normalized to prescription dose for ROIs between original planning and PDP‐perturbed planning were calculated for SR(ΔDSR) and HR(ΔDHR), and difference between ΔDSR and ΔDHR(ΔDSR−HR=ΔDSR−DLDHR) was also calculated. In addition, 2D and 3D γ passing rates (GPRs) were determined for both resolutions, and a correlation between GPRs and ΔDSR or ΔDHR for PTV dose metrics was determined. No considerably high mean differences between ΔDSR and ΔDHR were found for almost all ROIs and plans (<2%); however, |ΔDSR|,|ΔDHR|, and |ΔDSR−HR| for PTV were found to significantly increase as the PTV size decreased (e.g., PTV size<5cc). And statistically significant differences between SR and HR were observed for OARs proximal to targets in large brain target and H&N cases. As plan modulation represented by fractional MU/prescription dose (MU/cGy) became more complex, the 2D/3D GPRs tended to decrease; however, the modulation complexity did not make any noticeable distinctions in the DVH statistics of PTV between SR and HR, excluding the small brain cases whose PTVs were extremely small (PTV=11.0±10.1cc). Moderate to strong negative correlations (−1<r<−0.3) between GPRs and PTV dose metrics indicated that small clinical errors for PTV occur at the higher GPRs. In conclusion, doubling the detector density of the MapCHECK 2 device is recommended for small targets (i.e., PTV<5cc) and multiple targets with complex geometry with minimum setup error in the DVH‐based plan evaluation. PACS numbers: 87.55.dk, 87.55.kd, 87.55.km, 87.55.Qr, 87.56.Fc


Journal of Applied Clinical Medical Physics | 2014

Interplay effect of angular dependence and calibration field size of MapCHECK 2 on RapidArc quality assurance.

H Jin; V Keeling; D Johnson; S Ahmad

The purpose of this study is to investigate an effect of angular dependence and calibration field size of MapCHECK 2 on RapidArc QA for 6, 8, 10, and 15 MV The angular dependence was investigated by comparing MapCHECK 2 measurements in MapPHAN‐MC2 to the corresponding Eclipse calculations every 10° using 10 × 10 cm2 and 3 × 3 cm2 fields. Fourteen patients were selected to make RapidArc plans using the four energies, and verification plans were delivered to two phantom setups: MapCHECK 2/MapPHAN phantom (MapPHAN QA) and MapCHECK 2 on an isocentric mounting fixture (IMF QA). Migration of MapCHECK 2 on IMF was simulated by splitting arcs every 10° and displacing an isocenter of each partial arc in the Eclipse system (IMFACTUAL QA). To investigate the effect of calibration field size, MapCHECK 2 was calibrated by two field sizes (10 × 10 cm2 and 3 × 3 cm2) and applied to all QA measurements. The γ test was implemented using criteria of 1%/1 mm, 2%/2 mm, and 3%/3 mm. A mean dose of all compared points for each plan was compared with respect to a mean effective field size of the RapidArc plan. The angular dependence was considerably high at gantry angles of 90° ± 10° and 270° ± 10° (for 10 × 10/3 × 3 cm2 at 90°, 30.6% ± 6.6%/33.4%± 5.8% (6 MV), 17.3% ± 5.3%/15.0% ± 6.8% (8 MV), 8.9% ± 2.9%/7.8% ± 3.2% (10 MV), and 2.2% ± 2.3%/‐1.3% ± 2.6% (15 MV)). For 6 MV, the angular dependence significantly deteriorated the γ passing rate for plans of large field size in MapPHAN QA (< 90% using 3%/3 mm); however, these plans passed the γ test in IMFACTUAL QA (> 95%). The different calibration field sizes did not make any significant dose difference for both MapPHAN QA and IMFACTUAL QA. For 8, 10, and 15 MV, the angular dependence does not make any clinically meaningful impact on MapPHAN QA. Both MapPHAN QA and IMFACTUAL QA presented clinically acceptable γ passing rates using 3%/3 mm. MapPHAN QA showed better passing rates than IMFACTUAL QA for the tighter criteria. The 10 × 10 cm2 calibration showed better agreement for plans of small effective field size (< 5 × 5 cm2) in MapPHAN QA. There was no statistical difference between IMF QA and IMFACTUAL QA. In conclusion, MapPHAN QA is not recommended for plans of large field size, especially for 6 MV, and MapCHECK 2 should be calibrated using a field size similar to a mean effective field size of a RapidArc plan for better agreement for IMF QA. PACS numbers: 87.55.km, 87.55.Qr, 87.56.Fc


Journal of Applied Clinical Medical Physics | 2013

A comprehensive comparison study of three different planar IMRT QA techniques using MapCHECK 2.

V Keeling; S Ahmad; H Jin

The purpose of this study is to determine comparability of three different planar IMRT QA techniques: patient gantry angle composite (PGAC), single gantry angle composite (SGAC), and field by field (FBF), using MapCHECK 2 device and the γ test as performance metrics; and to assess the dependency of these techniques on intensity modulation, couch attenuation, and detector position (angular dependency). Ten highly modulated head and neck (H&N) and ten moderately modulated prostate IMRT validation plans were delivered using different techniques and were intercompared using the Students t‐test. The IMRT QA measurements were evaluated by percentage of points passing the γ test for three different criteria: 1% (dose difference)/1 mm (distance to agreement (DTA)) (C1), 2%/2 mm (C2), and 3%/3 mm (C3). To investigate dependency of the IMRT validation on treatment couch, ionization chamber measurements, as well as the conventional MapCHECK 2 QAs, were performed with PGAC and PGAC‐WOC (without couch; using an extended tennis racket‐type insert with negligible attenuation assumed). To determine angular dependency of the MapCHECK 2, patient gantry field‐by‐field (PG‐FBF) technique was delivered and evaluated separately for each field. The differences of γ passing rates between SGAC and FBF were statistically insignificant, while these were statistically significant when compared to PGAC. SGAC and FBF techniques showed statistically insignificant differences between different levels of intensity modulation (H&N vs. Prostate) at C2 and C3 criteria, while PGAC could not for any criteria. The treatment couch has a significant impact on γ passing rates (PGAC vs. PGAC‐WOC), but an ionization chamber‐based IMRT validations showed clinically insignificant dose errors (< 2%) in all cases. This study showed that the MapCHECK 2 device has large angular dependency, especially at gantry angles of 90° and 270°, which dramatically affected the γ passing rates of PGAC. With proper consideration of couch attenuation and beam arrangement, the MapCHECK 2 will produce clinically comparable QA results using the three different planar IMRT QA techniques. PACS numbers: 87.55.km, 87.55.Qr, 87.56.Fc


Journal of Applied Clinical Medical Physics | 2016

Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling

V Keeling; S Hossain; H Jin; S Ahmad; I Ali

The purpose of this study is to evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head‐and‐neck masks, simulated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X‐ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony‐anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X‐rays (XV) are acquired to verify that patient position is within tolerance. The uncertainties from the mask, localizer, IR ‐frame, X‐ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (−2.07−3.71mm,−5.82−5.62mm,−5.84−3.61mm;−2.10−2.40∘,−2.23−2.60∘,and−2.7−3.00∘) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, −1.27mm, −0.32∘, 0.18°, and 0.47°) and localizer (−0.03, −0.01, 0.03 mm, and −0.03∘, 0.00°, −0.01∘) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, −0.4, 0.21 mm). A statistical model is developed to evaluate the individual and cumulative systematic and random positioning uncertainties induced by the different hardware and software components of the 6D ExacTrac system. The uncertainties from the mask, localizer, IR frame, X‐ray imaging, couch, MV linac, and kV imager isocentricity are quantified using statistical modeling. PACS number(s): 87.56.B‐, 87.59.B‐The purpose of this study is to evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless 6D ExacTrac system. A statistical model is used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the Brainlab 6D ExacTrac system using the positioning shifts of 35 patients having cranial lesions. All these patients are immobilized with rigid head-and-neck masks, simulated with Brainlab localizer and planned with iPlan treatment planning system. Stereoscopic X-ray images (XC) are acquired and registered to corresponding digitally reconstructed radiographs using bony-anatomy matching to calculate 6D translational and rotational shifts. When the shifts are within tolerance (0.7 mm and 1°), treatment is initiated. Otherwise corrections are applied and additional X-rays (XV) are acquired to verify that patient position is within tolerance. The uncertainties from the mask, localizer, IR -frame, X-ray imaging, MV, and kV isocentricity are quantified individually. Mask uncertainty (translational: lateral, longitudinal, vertical; rotational: pitch, roll, yaw) is the largest and varies with patients in the range (-2.07-3.71mm,-5.82-5.62mm,-5.84-3.61mm;-2.10-2.40∘,-2.23-2.60∘,and-2.7-3.00∘) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88, 2.12, 1.40 mm, and 0.64°, 0.83°, 0.96°) is extracted from standard deviation of XC. Systematic uncertainties of the frame (0.18, 0.25, -1.27mm, -0.32∘, 0.18°, and 0.47°) and localizer (-0.03, -0.01, 0.03 mm, and -0.03∘, 0.00°, -0.01∘) are extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine are (0.27, 0.24, 0.34 mm) and kV imager (0.15, -0.4, 0.21 mm). A statistical model is developed to evaluate the individual and cumulative systematic and random positioning uncertainties induced by the different hardware and software components of the 6D ExacTrac system. The uncertainties from the mask, localizer, IR frame, X-ray imaging, couch, MV linac, and kV imager isocentricity are quantified using statistical modeling. PACS number(s): 87.56.B-, 87.59.B.


Journal of Applied Clinical Medical Physics | 2016

Dosimetric effects of positioning shifts using 6D‐frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy

H Jin; V Keeling; I Ali; S Ahmad

Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereotactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51±0.86 mm (lateral), 0.30±1.55 mm (longitudinal), and -1.63±1.00 mm (vertical); 0.53±0.56 mm (pitch), 0.42±0.60 mm (roll), and 0.44±0.90 mm (yaw), respectively. These were -0.07±0.24 mm, -0.07±0.25 mm, 0.06±0.21 mm, 0.04±0.23 mm, 0.00±0.30 mm, and 0.02±0.22 mm, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6%±3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4%±11.6%), and Dmin of CTV (2.8%±3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch|+|roll|+|yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent deterioration of CTV coverage. PACS number: 87.55.dk.Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X‐ray system for hypofractionated (3 or 5 fractions) intracranial stereotactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)‐based setup (XC: X‐ray correction) and post‐correction (XV: X‐ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51±0.86 mm (lateral), 0.30±1.55 mm (longitudinal), and −1.63±1.00 mm (vertical); 0.53±0.56 mm (pitch), 0.42±0.60 mm (roll), and 0.44±0.90 mm (yaw), respectively. These were −0.07±0.24 mm, −0.07±0.25 mm, 0.06±0.21 mm, 0.04±0.23 mm, 0.00±0.30 mm, and 0.02±0.22 mm, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6%±3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4%±11.6%), and Dmin of CTV (2.8%±3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch|+|roll|+|yaw|) were greater than 2°. With the 6D stereoscopic X‐ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV‐to‐PTV safety margin of 2 mm is large enough to prevent deterioration of CTV coverage. PACS number: 87.55.dk


Journal of Applied Clinical Medical Physics | 2017

Comparability of three output prediction models for a compact passively double-scattered proton therapy system

S Ferguson; Y Chen; Clara Ferreira; Mohammad Islam; V Keeling; Andy Lau; S Ahmad; H Jin

&NA; The purpose of this study was to investigate comparability of three output prediction models for a compact double‐scattered proton therapy system. Two published output prediction models are commissioned for our Mevion S250 proton therapy system. Model A is a correction‐based model (Sahoo et al., Med Phys, 2008;35(11):5088–5097) and model B is an analytical model which employs a function of r = (R’‐M’)/M’ (Kooy et al., Phys Med Biol, 2005;50:5487–5456) where R’ is defined as depth of distal 100% dose with straggling and M’ is the width between distal 100% dose and proximal 100% dose with straggling instead of the theoretical definition due to more accurate output prediction. The r is converted to ((R‐0.31)‐0.81 × M)/(0.81 × M) with the vendor definition of R (distal 90% dose) and M (distal 90% dose‐to‐proximal 95% dose), where R’ = R‐0.31 (g cm−2) and M’ = 0.81 × M (g cm−2). In addition, a quartic polynomial fit model (model C) mathematically converted from model B is studied. The outputs of 272 sets of R and M covering the 24 double scattering options are measured. Each models predicted output is compared to the measured output. For the total dataset, the percent difference between predicted (P) and measured (M) outputs ((P‐M)/M × 100%) were within ±3% using the three different models. The average differences (±standard deviation) were −0.13 ± 0.94%, −0.13 ± 1.20%, and −0.22 ± 1.11% for models A, B, and C, respectively. The p‐values of the t‐test were 0.912 (model A vs. B), 0.061 (model A vs. C), and 0.136 (model B vs. C). For all the options, all three models have clinically acceptable predictions. The differences between models A, B, and C are statistically insignificant; however, model A generally has the potential to more accurately predict the output if a larger dataset for commissioning is used. It is concluded that the models can be comparably used for the compact proton therapy system.


Medical Physics | 2016

SU-F-T-160: Commissioning of a Single-Room Double-Scattering Proton Therapy System

H Jin; S Ahmad; Y Chen; V Keeling; A Lau; M Islam; C Ferreira; S Ferguson

PURPOSE To report the detailed commissioning experience for a compact double-scattering Mevion S250 proton therapy system at a University Cancer Center site. METHODS The commissioning of the proton therapy system mainly consisted of ensuring integrity of mechanical and imaging system, beam data collection, and commissioning of a treatment planning system (TPS). First, mechanical alignment and imaging were tested including safety, interlocks, positional accuracy of couch and gantry, image quality, mechanical and imaging isocenter and so on. Second, extensive beam data (outputs, PDDs, and profiles) were collected and analyzed through effective sampling of range (R) and modulation width (M) from 24 beam options. Three different output (cGy/MU) prediction models were also commissioned as primary and secondary MU calculation tool. Third, the Varian Eclipse TPS was commissioned through five sets of data collections (in-water Bragg peak scans, in-air longitudinal fluence scans, in-air lateral profiles, in-air half-beam profiles, and an HU-to-stopping-power conversion curve) and accuracy of TPS calculation was tested using in-water scans and dose measurements with a 2D array detector with block and range compensator. Finally, an anthropomorphic phantom was scanned and heterogeneity effects were tested by inserting radiochromic films in the phantom and PET activation scans for range verification in conjunction with end-to-end test. RESULTS Beam characteristics agreed well with the vendor specifications; however, minor mismatches in R and M were found in some measurements during the beam data collection. These were reflected into the TPS commissioning such that the TPS could accurately predict the R and M within tolerance levels. The output models had a good agreement with measured outputs (<3% error). The end-to-end test using the film and PET showed reasonably the TPS predicted dose, R and M in heterogeneous medium. CONCLUSION The proton therapy system was successfully commissioned and was released for clinical use.


Medical Physics | 2016

SU-F-T-204: A Preliminary Approach of Reducing Contralateral Breast and Heart Dose in Left Sided Whole Breast Cancer Patients Utilizing Proton Beams

M Islam; H Jin; S Ahmad; S Hossain

PURPOSE To investigate the plan quality and feasibility of a hybrid plan utilizing proton and photon fields for superior coverage in the internal mammary (IM) and supraclavicular (S/C) regions while minimizing heart and contralateral breast dose for the left-sided whole breast cancer patient treatment. METHODS This preliminary study carried out on single left-sided intact breast patient involved IM and S/C nodes. The IM and S/C node fields of the 5-Field 3DCRT photon-electron base plan were replaced by two proton fields. These two along with two Field-in-Field tangential photon fields were optimized for comparable dose coverage. The treatment plans were done using Eclipse TPS for the total dose of 46Gy in 23 fractions with 95% of the prescription dose covering 95% of the RTOG PTV. The 3DCRT photon-electron and 4-Field photon-proton hybrid plans were compared for the PTV dose coverage as well as dose to OARs. RESULTS The overall RTOG PTV coverage for proton-hybrid and 3DCRT plan was comparable (95% of prescription dose covers 95% PTV volume). In proton-hybrid plan, 99% of IM volume received 100% dose whereas in 3DCRT only 77% received 100% dose. For S/C regions, 97% and 77% volume received 100% prescription dose in proton-hybrid and 3DCRT plans, respectively. The heart mean dose, V3Gy(%), and V5Gy(%) was 2.2Gy, 14.4%, 9.8% for proton-hybrid vs. 4.20 Gy, 21.5%, and 39% for 3DCRT plan, respectively. The maximum dose to the contralateral breast was 39.75Gy for proton-hybrid while 56.87Gy for 3DCRT plan. The mean total lung dose, V20Gy(%), and V30Gy(%) was 5.68Gy, 11.3%, 10.5% for proton-hybrid vs. 5.90Gy, 9.8%, 7.2% for 3DCRT, respectively. CONCLUSION The protonhybrid plan can offer better dose coverage to the involved lymphatic tissues while lower doses to the heart and contralateral breast. More treatment plans are currently in progress before being implemented clinically.


Medical Physics | 2016

SU‐F‐T‐146: Comparing Monte Carlo Simulations with Commissioning Beam Data for Mevion S250 Proton Therapy System

M Prusator; H Jin; S Ahmad; Y Chen

PURPOSE To evaluate the Monte Carlo simulated beam data with the measured commissioning data for the Mevion S250 proton therapy system. METHOD The Mevion S250 proton therapy system utilizes a passive double scattering technique with a unique gantry mounted superconducting accelerator and offers effective proton therapy in a compact design concept. The field shaping system (FSS) includes first scattering foil, range modulator wheel (RMW), second scattering foil and post absorber and offers two field sizes and a total of 24 treatment options from proton range of 5 cm to 32 cm. The treatment nozzle was modeled in detail using TOPAS (TOolkit for PArticle Simulation) Monte Carlo code. The timing feathers of the moving modulator wheels were also implemented to generate the Spread Out Bragg Peak (SOBP). The simulation results including pristine Bragg Peak, SOBP and dose profiles were compared with the data measured during beam commissioning. RESULTS The comparison between the measured data and the simulation data show excellent agreement. For pristine proton Bragg Peaks, the simulated proton range (depth of distal 90%) values agreed well with the measured range values within 1 mm accuracy. The differences of the distal falloffs (depth from distal 80% to 20%) were also found to be less than 1 mm between the simulations and measurements. For the SOBP, the widths of modulation (depth of proximal 95% to distal 90%) were also found to agree with the measurement within 1 mm. The flatness of the simulated and measured lateral profiles was found to be 0.6 % and 1.1 %, respectively. CONCLUSION The agreement between simulations and measurements demonstrate that TOPAS could be used as a viable platform to proton therapy applications. The matched simulation results offer a great tool and open opportunity for variety of applications.


Medical Physics | 2016

SU‐F‐T‐143: Implementation of a Correction‐Based Output Model for a Compact Passively Scattered Proton Therapy System

S Ferguson; S Ahmad; Y Chen; C Ferreira; M Islam; V Keeling; A Lau; H Jin

PURPOSE To commission and investigate the accuracy of an output (cGy/MU) prediction model for a compact passively scattered proton therapy system. METHODS A previously published output prediction model (Sahoo et al, Med Phys, 35, 5088-5097, 2008) was commissioned for our Mevion S250 proton therapy system. This model is a correction-based model that multiplies correction factors (d/MUwnc=ROFxSOBPF xRSFxSOBPOCFxOCRxFSFxISF). These factors accounted for changes in output due to options (12 large, 5 deep, and 7 small), modulation width M, range R, off-center, off-axis, field-size, and off-isocenter. In this study, the model was modified to ROFxSOBPFxRSFxOCRxFSFxISF_OCFxGACF by merging SOBPOCF and ISF for simplicity and introducing a gantry angle correction factor (GACF). To commission the model, outputs over 1,000 data points were taken at the time of the system commissioning. The output was predicted by interpolation (1D for SOBPF, FSF, and GACF; 2D for RSF and OCR) with inverse-square calculation (ISF_OCR). The outputs of 273 combinations of R and M covering total 24 options were measured to test the model. To minimize fluence perturbation, scattered dose from range compensator and patient was not considered. The percent differences between the predicted (P) and measured (M) outputs were calculated to test the prediction accuracy ([P-M]/Mx100%). RESULTS GACF was required because of up to 3.5% output variation dependence on the gantry angle. A 2D interpolation was required for OCR because the dose distribution was not radially symmetric especially for the deep options. The average percent differences were -0.03±0.98% (mean±SD) and the differences of all the measurements fell within ±3%. CONCLUSION It is concluded that the model can be clinically used for the compact passively scattered proton therapy system. However, great care should be taken when the field-size is less than 5×5 cm2 where a direct output measurement is required due to substantial output change by irregular block shape.

Collaboration


Dive into the H Jin's collaboration.

Top Co-Authors

Avatar

S Ahmad

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

V Keeling

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

I Ali

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

M Islam

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

S Ferguson

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

S Hossain

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Y Chen

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

A Lau

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

C Ferreira

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Andy Lau

Florida Atlantic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge