H. K. Prasad
All India Institute of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. K. Prasad.
Infection and Immunity | 2007
Amit Singhal; Anand Jaiswal; Virendra K. Arora; H. K. Prasad
ABSTRACT Mycobacterium tuberculosis inhibits gamma interferon (IFN-γ)-mediated antimycobacterial action by adopting diverse mechanisms. IFN-γ binds to its receptor, IFN-γR, in order to initiate proper signaling. We have observed reduced surface expression levels of IFN-γ receptor 1 (IFN-γR1) in untreated pulmonary tuberculosis patients compared to those in healthy individuals (P < 0.01). Following antitubercular therapy, the expression of IFN-γR1 was restored in these patients. To delineate the mechanism by which M. tuberculosis modulates IFN-γR1, in vitro experiments were designed, wherein the down modulation of IFN-γR1 surface expression was observed for CD14+ cells in peripheral blood mononuclear cells (PBMCs) cocultured with live M. tuberculosis compared to that for uninfected cells (P < 0.01). No modulation of IFN-γR1 expression was observed for CD14+ cells in PBMCs infected with Mycobacterium smegmatis. A time-dependent decrease in IFN-γR1 mRNA expression was observed for PBMCs infected with M. tuberculosis. Similar down modulation of IFN-γR1 protein and mRNA expression in phorbol myristate acetate-differentiated THP-1 cells (pdTHP-1) by M. tuberculosis was observed (P < 0.01). Using reporter gene analysis of 5′ deletion constructs of the IFN-γR1 gene (IFNGR1) promoter, the decrease in IFN-γR1 mRNA in M. tuberculosis-infected pdTHP-1 cells was shown to be due to the decreased transcription of IFNGR1. By immunoblotting and electrophoretic mobility shift assays, the down regulation of stimulating protein 1 (Sp1) expression and its recruitment on the phorbol ester-responsive element of the IFNGR1 promoter in M. tuberculosis-infected pdTHP-1 cells was observed. This down regulation of Sp1 in pdTHP-1 cells cocultured with M. tuberculosis may be responsible for the down regulation of IFN-γR1 expression, thereby potentially altering its receptivity to IFN-γ.
BMC Genomics | 2013
Sarbashis Das; Tanmoy Roychowdhury; Parameet Kumar; Anil Kumar; Priya Kalra; Jitendra Singh; Sarman Singh; H. K. Prasad; Alok Bhattacharya
BackgroundTuberculosis remains a major public health problem. Clinical tuberculosis manifests often as pulmonary and occasionally as extra-pulmonary tuberculosis. The emergence of drug resistant tubercle bacilli and its association with HIV is a formidable challenge to curb the spread of tuberculosis. There have been concerted efforts by whole genome sequencing and bioinformatics analysis to identify genomic patterns and to establish a relationship between the genotype of the organism and clinical manifestation of tuberculosis. Extra-pulmonary TB constitutes 15–20 percent of the total clinical cases of tuberculosis reported among immunocompetent patients, whereas among HIV patients the incidence is more than 50 percent. Genomic analysis of M. tuberculosis isolates from extra pulmonary patients has not been explored.ResultsThe genomic DNA of 5 extra-pulmonary clinical isolates of M. tuberculosis derived from cerebrospinal fluid, lymph node fine needle aspirates (FNAC) / biopsies, were sequenced. Next generation sequencing approach (NGS) was employed to identify Single Nucleotide Variations (SNVs) and computational methods used to predict their consequence on functional genes. Analysis of distribution of SNVs led to the finding that there are mixed genotypes in patient isolates and that many SNVs are likely to influence either gene function or their expression. Phylogenetic relationship between the isolates correlated with the origin of the isolates. In addition, insertion sites of IS elements were identified and their distribution revealed a variation in number and position of the element in the 5 extra-pulmonary isolates compared to the reference M. tuberculosis H37Rv strain.ConclusionsThe results suggest that NGS sequencing is able to identify small variations in genomes of M. tuberculosis isolates including changes in IS element insertion sites. Moreover, variations in isolates of M. tuberculosis from non-pulmonary sites were documented. The analysis of our results indicates genomic heterogeneity in the clinical isolates.
The Journal of Molecular Diagnostics | 2009
Parameet Kumar; Kapili Nath; Bimba Rath; Manas K. Sen; Potharuju Vishalakshi; Devender S. Chauhan; Vishwa Mohan Katoch; Sarman Singh; Sanjay Tyagi; Vishnubhatla Sreenivas; H. K. Prasad
A real-time polymerase chain reaction (PCR) assay for the direct identification of Mycobacterium tuberculosis and M. bovis using molecular beacons was developed. The assay was modified for use in regular thermal cyclers. Molecular beacons that were specific for M. tuberculosis (Tb-B) and M. bovis (Bo-B) were designed. The fluorescence of the target PCR product-molecular beacon probe complex was detected visually using a transilluminator. The results were then compared with those of conventional multiplex PCR (CM-PCR) assays and biochemical identification. The detection limit of Tb-B and Bo-B beacons was 500 fg and 50 fg by the visual format and real-time PCR assay, respectively, compared with 5 pg by CM-PCR assay. Pulmonary and extrapulmonary samples were examined. The agreement between culture and the two assays was very good in sputum samples and fair in extrapulmonary samples. The agreement between clinical diagnoses with the two assays was moderate in extrapulmonary samples. There was very good agreement between CM-PCR and visual format assays for all samples used in the study. Concordance in the identification of isolates by the visual, CM-PCR assay, and biochemical identification was seen. Hence, the use of molecular beacon detection of M. tuberculosis and M. bovis in clinical samples is feasible by setting up two asymmetric PCRs concurrently. The assay is sensitive, specific, simple to interpret, and takes less than 3 hours to complete.
Journal of Medical Microbiology | 1981
H. K. Prasad; Indira Nath
The factors influencing the incorporation of 3H-thymidine (3H-Tdr) in the DNA of Mycobacterium leprae within macrophages derived from human blood have been evaluated. Fifty strains of M. leprae derived from skin nodules of patients with lepromatous leprosy were studied for their ability to incorporate 3H-Tdr. Control macrophages of the same donor maintained alone, or with autoclaved M. leprae, showed low levels of baseline 3H-Tdr incorporation. During a 15-day period of pulsing, 27 of the M. leprae strains incorporated 3H-Tdr at levels of 216-2834% of the incorporation by control cultures. Significant incorporation was observable by the second week of culture and cumulative increases occurred by the third week. A 24-h pulse with 3H-Tdr was inadequate for a detectable increase. A minimal duration of 4-5 days of continuous pulsing was required to obtain a significant increase in the incorporation of 3H-Tdr. Of the 50 M. leprae strains, 23 (46%) failed to incorporate the radiolabel. This failure was apparently not related to differences in the disease status of patients, to the transport conditions for the biopsies, to morphological indices of the extracted M. leprae or to the origin of the host macrophages.
Clinical and Vaccine Immunology | 2013
Chaman Saini; H. K. Prasad; Rajni Rani; A. Murtaza; Namita Misra; N. P. Shanker Narayan; Indira Nath
ABSTRACT The Lsr2 protein of Mycobacterium leprae and its synthetic peptides have been shown to elicit lymphoproliferation and gamma interferon (IFN-γ) release by peripheral blood mononuclear cells (PBMCs) of patients with lepromatous leprosy (M. Chaduvula, A. Murtaza, N. Misra, N. P. Narayan, V. Ramesh, H. K. Prasad, R. Rani, R. K. Chinnadurai, I. Nath, Infect. Immun. 80:742–752, 2012). PBMCs from 16 patients with lepromatous leprosy who were undergoing erythema nodosum leprosum (ENL) (type 2) and 5 patients with reversal reactions (RR) (type 1) were stimulated with M. leprae, recombinant Lsr2, and six end-to-end synthetic peptides (A through F) spanning the Lsr2 sequence. During the reaction all patients with ENL showed lymphoproliferation (stimulation index, >2) in response to peptides A and F, with other peptides eliciting responses in 75 to 88% of the subjects. In PBMC cultures, both lymphoproliferation and IFN-γ release for peptide E were significantly higher than for peptides B and C and recombinant Lsr2 (P < 0.05, Wilcoxon signed-rank test). Five patients with RR also showed enhanced lymphoproliferative responses and IFN-γ release in response to Lsr2, M. leprae, and peptide E. Six months postreaction, 14 patients with ENL continued to exhibit responses to Lsr2 and its peptides, with the highest responses being elicited by peptide E. However, 5 subjects showed no lymphoproliferation and had reduced IFN-γ release in response to Lsr2 peptides (P < 0.001, Kruskal-Wallis test) but responded to recombinant Lsr2. Six patients with ENL had HLA-A*68.01, which the STFPEITHI program showed to have high peptide-binding scores of 20 to 21 for peptides E, B, and C. Eleven patients had HLA-DRB1*1501 and HLA-DRB1*1502, which had high binding scores for peptides C and E. Thus, Lsr2 and its peptides are recognized in leprosy reactions during and well after the subsidence of clinical signs.
PLOS ONE | 2010
Parameet Kumar; Manas K. Sen; Devendra Singh Chauhan; Vishwa Mohan Katoch; Sarman Singh; H. K. Prasad
Background The nonspecific clinical presentation and paucibacillary nature of tuberculous pleuritis remains a challenge for diagnosis. Diagnosis of tuberculous pleural effusion depends on the demonstration of the presence of tubercle bacilli in the sputum, pleural fluid, or pleural biopsy specimen, or demonstration of granuloma in pleura by histological examination. We examined the clinical utility of the diagnosis of pleural tuberculosis using the in house N-PCR assay, AFB smear microscopy and culture. Besides pleural fluid the inclusion of sputum in the efficacy of diagnosis of pleural tuberculosis was scrutinized. Methodology/Principal Findings Pleural fluid and sputum samples of 58 tuberculous and 42 non-tuberculous pleural effusion patients were processed for AFB smear microscopy, culture and the N-PCR assay. Mycobacteria were detected exclusively in tuberculous pleural effusion samples. None of the non-tuberculous pleural effusion samples were positive for mycobacteria. Comparative analysis showed that the N-PCR assay had the highest sensitivity. Inclusion of sputum along with pleural fluid increased N-PCR sensitivity from 51.7 to 70.6% (p<0.0001).This improved sensitivity was reflected in AFB smear microscopy and isolation by culture. The sensitivity enhanced on inclusion of sputum from 3.4 (p = 0.50) to 10.3% (p = 0.038) for AFB smear microscopy and for isolation of mycobacteria from 10.3(p = 0.03) to 22.4% (p = 0.0005). Thirteen isolates were obtained from 58 pleural tuberculosis patients. Eleven mycobacterial isolates were identified as M.tuberculosis and two as M.fortuitum and M.chelonae. Complete concordance was seen between the biochemical identification of isolates and the N-PCR identification of mycobacterial species prior to isolation. Conclusions/Significance To the best of our knowledge this is the first PCR based report on utility of sputum for diagnosis of pleural tuberculosis. The present study demonstrates that a combination of pleural fluid with sputum sample and N-PCR improved the diagnosis of pleural tuberculosis.
PLOS ONE | 2012
Vikas Verma; Vibha Taneja; Anand Jaiswal; Sangeeta Sharma; Digamber Behera; Vishnubhatla Sreenivas; Shyam S. Chauhan; H. K. Prasad
Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the −237 polymorphic site in the 5′ promoter region of the IL-12Rβ2 (SNP ID: rs11810249) gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-α) of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rβ2 mRNA in these patients elevated IFN-α expression could modulate their immune responses to Mycobacterium tuberculosis.
PLOS ONE | 2010
Anchal Vishnoi; Rahul Roy; H. K. Prasad; Alok Bhattacharya
Phenotypic behavior of a group of organisms can be studied using a range of molecular evolutionary tools that help to determine evolutionary relationships. Traditionally a gene or a set of gene sequences was used for generating phylogenetic trees. Incomplete evolutionary information in few selected genes causes problems in phylogenetic tree construction. Whole genomes are used as remedy. Now, the task is to identify the suitable parameters to extract the hidden information from whole genome sequences that truly represent evolutionary information. In this study we explored a random anchor (a stretch of 100 nucleotides) based approach (ABWGP) for finding distance between any two genomes, and used the distance estimates to compute evolutionary trees. A number of strains and species of Mycobacteria were used for this study. Anchor-derived parameters, such as cumulative normalized score, anchor order and indels were computed in a pair-wise manner, and the scores were used to compute distance/phylogenetic trees. The strength of branching was determined by bootstrap analysis. The terminal branches are clearly discernable using the distance estimates described here. In general, different measures gave similar trees except the trees based on indels. Overall the tree topology reflected the known biology of the organisms. This was also true for different strains of Escherichia coli. A new whole genome-based approach has been described here for studying evolutionary relationships among bacterial strains and species.
Human Immunology | 2010
Vinay Gupta; Anand Jaiswal; Digamber Behera; H. K. Prasad
Dendritic cell (DC) subsets, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs) play a fundamental role in immune response to Mycobacterium tuberculosis (M. tuberculosis). Flow-cytometric estimation of DC subsets showed differences in the ratio of these subsets in untreated, smear-positive pulmonary tuberculosis patients compared with healthy family contacts (HFC, p < 0.05). The percentage of pDCs (0.14 +/- 0.01) was higher than mDCs (0.12 +/- 0.01) in patients, whereas in HFC, mDCs (0.15 +/- 0.01) was higher than pDCs (0.1 +/- 0.01). The percentage of mDCs (0.15 +/- 0.01) and pDCs (0.11 +/- 0.01) was restored in treated patients. Alteration in the DC subsets before and after chemotherapy was confirmed in the follow-up of acid-fast bacilli (AFB)-positive patients. This reversal in the percentage of mDC vs pDCs implicates the influence of active disease on circulating DC subsets. The cytokine bead array revealed an inverse relationship in the circulating levels of IL-12 and IFN-gamma. High IL-12 (37.9 +/- 15.2) and low IFN-gamma (11.09 +/- 3.6) was seen in HFCs derived serum samples compared with that of patients (p < 0.05). The higher percentage of mDCs and elevated IL-12 levels was found to be associated with high risk HFCs investigated. Furthermore CpG/LPS-stimulated whole-blood culture of untreated patients expressed high IFN-alpha in pDCs and less IL-12 in mDCs compared with those of treated patients.
Infection and Immunity | 2012
Mehervani Chaduvula; A. Murtaza; Namita Misra; N. P. Shankar Narayan; V. Ramesh; H. K. Prasad; Rajni Rani; R. K. Chinnadurai; Indira Nath
ABSTRACT Lsr2 protein of Mycobacterium leprae was shown earlier to elicit B and T cell responses in leprosy patients (20, 28). Lymphoproliferation to M. leprae and Lsr2 antigens was observed in >70% of tuberculoid (T) patients and in 16 and 34% of lepromatous (L) patients, respectively. We focused on the M. leprae nonresponders in the lepromatous group using 22 synthetic Lsr2 peptides (end-to-end peptides A to F and overlapping peptides p1 to p16) in in vitro T cell responses. A total of 125 leprosy and 13 tuberculosis patients and 19 healthy controls from the area of endemicity (here, healthy controls, or HC) were investigated. The highest responses were observed (67 to 100%) in HC for all peptides except p1 to p3, and the lowest was observed in tuberculosis patients. Significant differences in lymphoproliferation were observed in T, L, and HC groups (analysis of variance [ANOVA], P = 0.000 to 0.015) for all end-to-end peptides except B and for p5 and p7 to p10. Hierarchical recognition between lepromatous and tuberculoid leprosy was noted for p8 (P < 0.05) and between the HC and L groups for p7 to p10, p15, and p16 (P < 0.005 to P < 0.02). Significant lymphoproliferation was observed to peptides A to F and p1 to p9, p11, p12, p15, p16 (P = 0.000 to 0.001) with 40% responding to peptides C and p16 in L patients. Lepromatous patients also showed significantly higher levels of a gamma interferon (IFN-γ) response to peptide C than to other peptides (P < 0.05). Major histocompatibility complex (MHC) class II bias for peptide recognition was not observed. These studies indicate that Lsr2 has multiple T cell epitopes that induce in vitro T cell responses in the highly infective lepromatous leprosy patients.
Collaboration
Dive into the H. K. Prasad's collaboration.
Post Graduate Institute of Medical Education and Research
View shared research outputs