Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Leighton Grimes is active.

Publication


Featured researches published by H. Leighton Grimes.


Nature Genetics | 2003

Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2

Richard E. Person; Feng-Qian Li; Zhijun Duan; Kathleen F. Benson; Jeremy Wechsler; Helen A. Papadaki; George M. Eliopoulos; Christina L. Kaufman; Salvatore Bertolone; Betty Nakamoto; Thalia Papayannopoulou; H. Leighton Grimes; Marshall S. Horwitz

Mice lacking the transcriptional repressor oncoprotein Gfi1 are unexpectedly neutropenic. We therefore screened GFI1 as a candidate for association with neutropenia in affected individuals without mutations in ELA2 (encoding neutrophil elastase), the most common cause of severe congenital neutropenia (SCN; ref. 3). We found dominant negative zinc finger mutations that disable transcriptional repressor activity. The phenotype also includes immunodeficient lymphocytes and production of a circulating population of myeloid cells that appear immature. We show by chromatin immunoprecipitation, gel shift, reporter assays and elevated expression of ELA2 in vivo in neutropenic individuals that GFI1 represses ELA2, linking these two genes in a common pathway involved in myeloid differentiation.


Oncogene | 2005

Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells

Brent W. Sutherland; Jill E. Kucab; Joyce Wu; Cathy Lee; Maggie Cheang; Erika Yorida; Dmitry Turbin; Shoukat Dedhar; Colleen C. Nelson; Michael Pollak; H. Leighton Grimes; Kathy D. Miller; Sunil Badve; David Huntsman; C Blake-Gilks; Min Chen; Catherine J. Pallen; Sandra E. Dunn

Akt/PKB is a serine/threonine kinase that promotes tumor cell growth by phosphorylating transcription factors and cell cycle proteins. There is particular interest in finding tumor-specific substrates for Akt to understand how this protein functions in cancer and to provide new avenues for therapeutic targeting. Our laboratory sought to identify novel Akt substrates that are expressed in breast cancer. In this study, we determined that activated Akt is positively correlated with the protein expression of the transcription/translation factor Y-box binding protein-1 (YB-1) in primary breast cancer by screening tumor tissue microarrays. We therefore questioned whether Akt and YB-1 might be functionally linked. Herein, we illustrate that activated Akt binds to and phosphorylates the YB-1 cold shock domain at Ser102. We then addressed the functional significance of disrupting Ser102 by mutating it to Ala102. Following the stable expression of Flag:YB-1 and Flag:YB-1 (Ala102) in MCF-7 cells, we observed that disruption of the Akt phosphorylation site on YB-1 suppressed tumor cell growth in soft agar and in monolayer. This correlated with an inhibition of nuclear translocation by the YB-1(Ala102) mutant. In conclusion, YB-1 is a new Akt substrate and disruption of this specific site inhibits tumor cell growth.


Development | 2003

The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

Deeann Wallis; Melanie J. Hamblen; Yi Zhou; Koen J. T. Venken; Armin Schumacher; H. Leighton Grimes; Huda Y. Zoghbi; Stuart H. Orkin; Hugo J. Bellen

Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and ccchlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss causes programmed cell death.


Nature | 2014

Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

Paul A. Northcott; C A Lee; Thomas Zichner; Adrian M. Stütz; Serap Erkek; Daisuke Kawauchi; David Shih; Volker Hovestadt; Marc Zapatka; Dominik Sturm; David T. W. Jones; Marcel Kool; Marc Remke; Florence M.G. Cavalli; Scott Zuyderduyn; Gary D. Bader; Scott R. VandenBerg; Lourdes Adriana Esparza; Marina Ryzhova; Wei Wang; Andrea Wittmann; Sebastian Stark; Laura Sieber; Huriye Seker-Cin; Linda Linke; Fabian Kratochwil; Natalie Jäger; Ivo Buchhalter; Charles D. Imbusch; Gideon Zipprich

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate ‘enhancer hijacking’ as an efficient mechanism driving oncogene activation in a childhood cancer.


Journal of Experimental Medicine | 2007

Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis

Sara Wojciechowski; Pulak Tripathi; Tristan Bourdeau; Luis Acero; H. Leighton Grimes; Jonathan D. Katz; Fred D. Finkelman; David A. Hildeman

We examined the role of the antiapoptotic molecule Bcl-2 in combating the proapoptotic molecule Bim in control of naive and memory T cell homeostasis using Bcl-2−/− mice that were additionally deficient in one or both alleles of Bim. Naive T cells were significantly decreased in Bim+/−Bcl-2−/− mice, but were largely restored in Bim−/−Bcl-2−/− mice. Similarly, a synthetic Bcl-2 inhibitor killed wild-type, but not Bim−/−, T cells. Further, T cells from Bim+/−Bcl-2−/− mice died rapidly ex vivo and were refractory to cytokine-driven survival in vitro. In vivo, naive CD8+ T cells required Bcl-2 to combat Bim to maintain peripheral survival, whereas naive CD4+ T cells did not. In contrast, Bim+/−Bcl-2−/− mice generated relatively normal numbers of memory T cells after lymphocytic choriomeningitis virus infection. Accumulation of memory T cells in Bim+/−Bcl-2−/− mice was likely caused by their increased proliferative renewal because of the lymphopenic environment of the mice. Collectively, these data demonstrate a critical role for a balance between Bim and Bcl-2 in controlling homeostasis of naive and memory T cells.


Molecular and Cellular Biology | 2005

Gfi1 Coordinates Epigenetic Repression of p21Cip/WAF1 by Recruitment of Histone Lysine Methyltransferase G9a and Histone Deacetylase 1

Zhijun Duan; Adrian Zarebski; Diego E. Montoya-Durango; H. Leighton Grimes; Marshall S. Horwitz

ABSTRACT The growth factor independent 1 (Gfi1) transcriptional regulator oncoprotein plays a crucial role in hematopoietic, inner ear, and pulmonary neuroendocrine cell development and governs cell processes as diverse as self-renewal of hematopoietic stem cells, proliferation, apoptosis, differentiation, cell fate specification, and oncogenesis. However, the molecular basis of its transcriptional functions has remained elusive. Here we show that Gfi1 recruits the histone lysine methyltransferase G9a and the histone deacetylase 1 (HDAC1) in order to modify the chromatin of genes targeted for repression by Gfi1. G9a and HDAC1 are both in a repressive complex assembled by Gfi1. Endogenous Gfi1 colocalizes with G9a, HDAC1, and K9-dimethylated histone H3. Gfi1 associates with G9a and HDAC1 on the promoter of the cell cycle regulator p21 Cip/WAF1 , resulting in an increase in K9 dimethylation at histone H3. Silencing of Gfi1 expression in myeloid cells reverses G9a and HDAC1 recruitment to p21 Cip/WAF1 and elevates its expression. These findings highlight the role of epigenetics in the regulation of development and oncogenesis by Gfi1.


Blood | 2009

Gfi1 regulates miR-21 and miR-196b to control myelopoiesis.

Chinavenmeni S. Velu; Avinash M. Baktula; H. Leighton Grimes

The zinc finger protein growth factor independent-1 (Gfi1) is a transcriptional repressor that is critically required for normal granulocytic differentiation. GFI1 loss-of-function mutations are found in some patients with severe congenital neutropenia (SCN). The SCN-associated GFI1-mutant proteins act as dominant negatives to block granulopoiesis through selective deregulation of a subset of GFI1 target genes. Here we show that Gfi1 is a master regulator of microRNAs, and that deregulated expression of these microRNAs recapitulates a Gfi1 loss-of-function block to granulocyte colony-stimulating factor (G-CSF)-stimulated granulopoiesis. Specifically, bone marrow cells from a GFI1-mutant SCN patient and Gfi1(-/-) mice display deregulated expression of miR-21 and miR-196B expression. Flow cytometric analysis and colony assays reveal that the overexpression or depletion of either miR induces changes in myeloid development. However, coexpression of miR-21 and miR-196b (as seen in Gfi1(-/-) mice and a GFI1N382S SCN patient) completely blocks G-CSF-induced granulopoiesis. Thus, our results not only identify microRNAs whose regulation is required during myelopoiesis, but also provide an example of synergy in microRNA biologic activity and illustrate potential mechanisms underlying SCN disease pathogenesis.


Journal of Clinical Investigation | 2013

Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells

Susumu Goyama; Janet Schibler; Lea Cunningham; Yue Zhang; Yalan Rao; Nahoko Nishimoto; Masahiro Nakagawa; Andre Olsson; Mark Wunderlich; Kevin A. Link; Benjamin Mizukawa; H. Leighton Grimes; Mineo Kurokawa; P. Paul Liu; Gang Huang; James C. Mulloy

RUNX1 is generally considered a tumor suppressor in myeloid neoplasms. Inactivating RUNX1 mutations have frequently been found in patients with myelodysplastic syndrome (MDS) and cytogenetically normal acute myeloid leukemia (AML). However, no somatic RUNX1 alteration was found in AMLs with leukemogenic fusion proteins, such as core-binding factor (CBF) leukemia and MLL fusion leukemia, raising the possibility that RUNX1 could actually promote the growth of these leukemia cells. Using normal human cord blood cells and those expressing leukemogenic fusion proteins, we discovered a dual role of RUNX1 in myeloid leukemogenesis. RUNX1 overexpression inhibited the growth of normal cord blood cells by inducing myeloid differentiation, whereas a certain level of RUNX1 activity was required for the growth of AML1-ETO and MLL-AF9 cells. Using a mouse genetic model, we also showed that the combined loss of Runx1/Cbfb inhibited leukemia development induced by MLL-AF9. RUNX2 could compensate for the loss of RUNX1. The survival effect of RUNX1 was mediated by BCL2 in MLL fusion leukemia. Our study unveiled an unexpected prosurvival role for RUNX1 in myeloid leukemogenesis. Inhibiting RUNX1 activity rather than enhancing it could be a promising therapeutic strategy for AMLs with leukemogenic fusion proteins.


Journal of Cellular Biochemistry | 2003

Gfi‐1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA‐sensitive mechanism

Laura McGhee; Josh Bryan; Liza T Elliott; H. Leighton Grimes; Avedis Kazanjian; J. Nathan Davis; Shari Meyers

Gfi‐1 and Gfi‐1B can repress transcription and play important roles in hematopoietic cell survival and differentiation. Although these proteins are known to bind DNA through a C‐terminal zinc‐finger domain and may require an N‐terminal SNAG domain (SNAIL/Gfi‐1) to repress transcription, the mechanism by which Gfi‐1 and Gfi‐1B act is unknown. A first step towards understanding the mechanism by which these proteins repress transcription is to identify interacting proteins that could contribute to transcriptional repression. ETO (also termed MTG8), was first identified through its involvement in the (8;21) translocation associated with acute myelogenous leukemia. It attaches to the nuclear matrix and associates with histone deacetylases and the co‐repressors N‐CoR, SMRT, and mSin3A, and may act as a co‐repressor for site‐specific transcriptions factors. In this report we demonstrate that Gfi‐1 interacts with ETO and related proteins both in vitro and in vivo and with histone deacetylase proteins in vivo. We observed that a portion of Gfi‐1 and Gfi‐1B associated with the nuclear matrix, as is the case with ETO. Moreover, Gfi‐1 and ETO co‐localize to punctate subnuclear structures. When co‐expressed in mammalian cells, Gfi‐1 associates with histone deacetylse‐1 (HDAC‐1), HDAC‐2, and HDAC‐3. These data identify ETO as a partner for Gfi‐1 and Gfi‐1B, and suggest that Gfi‐1 proteins repress transcription through recruitment of histone deacetylase‐containing complexes. J. Cell. Biochem. 89: 1005–1018, 2003.


Nature | 2009

Identification of IFRD1 as a modifier gene for cystic fibrosis lung disease

Yuanyuan Gu; Isaac T.W. Harley; Lindsay B. Henderson; Bruce J. Aronow; Ilja Vietor; Lukas A. Huber; John B. Harley; Jeffrey R. Kilpatrick; Carl D. Langefeld; Adrienne H. Williams; Anil G. Jegga; Jing Chen; Marsha Wills-Karp; S Hasan Arshad; Susan Ewart; Chloe L. Thio; Leah M. Flick; Marie Dominique Filippi; H. Leighton Grimes; Mitchell L. Drumm; Garry R. Cutting; Christopher L. Karp

Lung disease is the major cause of morbidity and mortality in cystic fibrosis, an autosomal recessive disease caused by mutations in CFTR. In cystic fibrosis, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of cystic fibrosis lung disease has considerable heritability, independent of CFTR genotype. To identify genetic modifiers, here we performed a genome-wide single nucleotide polymorphism scan in one cohort of cystic fibrosis patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of cystic fibrosis lung disease severity. IFRD1 is a histone-deacetylase-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice showed blunted effector function, associated with decreased NF-κB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease—a phenotype primarily dependent on haematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data indicate that IFRD1 modulates the pathogenesis of cystic fibrosis lung disease through the regulation of neutrophil effector function.Lung disease is the major cause of morbidity and mortality in cystic fibrosis (CF), an autosomal recessive disease caused by mutations in CFTR. In CF, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of CF lung disease has significant heritability, independent of CFTR genotype1. To identify genetic modifiers, we performed a genome-wide single nucleotide polymorphism (SNP) scan in one cohort of CF patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of CF lung disease severity. IFRD1 is a histone deacetylase (HDAC)-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice exhibited blunted effector function, associated with decreased NF-κB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease—a phenotype primarily dependent on hematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data suggest that IFRD1 modulates the pathogenesis of CF lung disease through regulation of neutrophil effector function.

Collaboration


Dive into the H. Leighton Grimes's collaboration.

Top Co-Authors

Avatar

Chinavenmeni S. Velu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bruce J. Aronow

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

David E. Muench

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nathan Salomonis

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andre Olsson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jose A. Cancelas

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

David A. Hildeman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sara E. Meyer

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tristan Bourdeau

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shane R. Horman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge