H. M. Cho
National Institute of Standards and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H. M. Cho.
The Astrophysical Journal | 2011
R. Keisler; C. L. Reichardt; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer; M. Millea
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe
The Astrophysical Journal | 2014
Z. Hou; C. L. Reichardt; K. Story; B. Follin; R. Keisler; K. A. Aird; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; R. de Putter; M. Dobbs; Scott Dodelson; J. P. Dudley; E. M. George; N. W. Halverson; G. P. Holder; W. L. Holzapfel; S. Hoover; J. D. Hrubes; M. Joy; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van
We explore extensions to the ΛCDM cosmology using measurements of the cosmic microwave background (CMB) from the recent SPT-SZ survey, along with data from WMAP7 and measurements of H_0 and baryon acoustic oscillation (BAO). We check for consistency within ΛCDM between these data sets, and find some tension. The CMB alone gives weak support to physics beyond ΛCDM, due to a slight trend relative to ΛCDM of decreasing power toward smaller angular scales. While it may be due to statistical fluctuation, this trend could also be explained by several extensions. We consider running of the primordial spectral index (dn_s /d ln k), as well as two extensions that modify the damping tail power (the primordial helium abundance Y_p and the effective number of neutrino species N_(eff)) and one that modifies the large-scale power due to the integrated Sachs-Wolfe effect (the sum of neutrino masses ∑m_ν). These extensions have similar observational consequences and are partially degenerate when considered simultaneously. Of the six one-parameter extensions considered, we find CMB to have the largest preference for dn_s/d ln k with –0.046 0 from CMB+BAO+H_0 + SPT_(CL). The median value is (0.32 ± 0.11) eV, a factor of six above the lower bound set by neutrino oscillation observations. All data sets except H_0 show some preference for massive neutrinos; data combinations including H_0 favor nonzero masses only if BAO data are also included. We also constrain the two-parameter extensions N_(eff) + ∑m_ν and N_(eff) + Y_p to explore constraints on additional light species and big bang nucleosynthesis, respectively.
Proceedings of SPIE | 2014
B. A. Benson; Peter A. R. Ade; Z. Ahmed; S. W. Allen; K. Arnold; J. E. Austermann; A. N. Bender; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; Jean-François Cliche; T. M. Crawford; A. Cukierman; T. de Haan; M. Dobbs; D. Dutcher; W. Everett; A. Gilbert; N. W. Halverson; D. Hanson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton; Gilbert P. Holder; W. L. Holzapfel; K. D. Irwin; R. Keisler; L. Knox
We describe the design of a new polarization sensitive receiver, spt-3g, for the 10-meter South Pole Telescope (spt). The spt-3g receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, spt-pol. The sensitivity of the spt-3g receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through spt-3g data alone or in combination with bicep2/keck, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the spt-3g survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (des), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies
Nature | 2012
M. McDonald; Matthew B. Bayliss; B. A. Benson; Ryan J. Foley; J. Ruel; Peter W. Sullivan; Sylvain Veilleux; K. A. Aird; M. L. N. Ashby; Marshall W. Bautz; G. Bazin; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; J. P. Dudley; E. Egami; W. Forman; Gordon Garmire; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson
In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster’s lifetime, leading to continuous ‘cooling flows’ of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these ‘cool-core’ clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 1045 erg s−1) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.
Review of Scientific Instruments | 2012
M. Dobbs; M. Lueker; K. A. Aird; A. N. Bender; B. A. Benson; L. E. Bleem; J. E. Carlstrom; C. L. Chang; H. M. Cho; John Clarke; T. M. Crawford; A. T. Crites; D. Flanigan; T. de Haan; E. M. George; N. W. Halverson; W. L. Holzapfel; J. D. Hrubes; B. R. Johnson; John Joseph; R. Keisler; J. Kennedy; Z. Kermish; T. M. Lanting; A. T. Lee; E. M. Leitch; D. Luong-Van; J. J. McMahon; J. Mehl; S. S. Meyer
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
The Astrophysical Journal | 2013
J. E. Geach; R. C. Hickox; L. E. Bleem; M. Brodwin; Gilbert P. Holder; K. A. Aird; B. A. Benson; Suman Bhattacharya; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; Kevin N. Hainline; N. W. Halverson; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; R. Keisler; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van; D. P. Marrone
We measure the cross-power spectrum of the projected mass density as traced by the convergence of the cosmic microwave background lensing field from the South Pole Telescope (SPT) and a sample of Type 1 and 2 (unobscured and obscured) quasars at 〈z〉 ~ 1 selected with the Wide-field Infrared Survey Explorer, over 2500 deg^2. The cross-power spectrum is detected at ≈7σ, and we measure a linear bias b = 1.61 ± 0.22, consistent with clustering analyses. Using an independent lensing map, derived from Planck observations, to measure the cross-spectrum, we find excellent agreement with the SPT analysis. The bias of the combined sample of Type 1 and 2 quasars determined in this work is similar to that previously determined for Type 1 quasars alone; we conclude that obscured and unobscured quasars trace the matter field in a similar way. This result has implications for our understanding of quasar unification and evolution schemes.
The Astrophysical Journal | 2012
L. E. Bleem; A. van Engelen; G. P. Holder; K. A. Aird; R. Armstrong; M. L. N. Ashby; M. R. Becker; B. A. Benson; T. Biesiadzinski; M. Brodwin; Michael T. Busha; J. E. Carlstrom; C. L. Chang; H. M. Cho; T. M. Crawford; A. T. Crites; T. de Haan; S. Desai; M. Dobbs; O. Doré; J. P. Dudley; J. E. Geach; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; N. L. Harrington; F. W. High; B. Holden; W. L. Holzapfel
We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg2 of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4σ, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg2 SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe.
The Astrophysical Journal | 2015
S. Bocquet; A. Saro; J. J. Mohr; K. A. Aird; Matthew L. N. Ashby; Marshall W. Bautz; Matthew B. Bayliss; G. Bazin; B. A. Benson; L. E. Bleem; M. Brodwin; J. E. Carlstrom; C. L. Chang; I. Chiu; H. M. Cho; Alejandro Clocchiatti; T. M. Crawford; A. T. Crites; S. Desai; T. de Haan; J. P. Dietrich; M. Dobbs; Ryan J. Foley; W. Forman; D. Gangkofner; E. M. George; Michael D. Gladders; Anthony H. Gonzalez; N. W. Halverson; C. Hennig
We present a velocity dispersion-based mass calibration of the South Pole Telescope SunyaevZel’dovich eect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg 2 of the survey along with 63 velocity dispersion ( v) and 16 X-ray YX measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. Our method accounts for cluster selection, cosmological sensitivity, and uncertainties in the mass calibrators. The calibrations using v and YX are consistent at the 0:6 level, with the v calibration preferring 16% higher masses. We use the full SPTCL dataset (SZ clusters+ v+YX) to measure 8( m=0:27) 0:3 = 0:809 0:036 within a at CDM model. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is P m = 0:06 eV, we nd the datasets to be consistent at the 1.0 level for WMAP9 and 1.5 for Planck+WP. Allowing for larger P m further reconciles the results. When we combine the SPTCL and Planck+WP datasets with information from baryon acoustic oscillations and supernovae Ia, the preferred cluster masses are 1:9 higher than the YX calibration and 0:8 higher than the v calibration. Given the scale of these shifts ( 44% and 23% in mass, respectively), we execute a goodness of t test; it reveals no tension, indicating that the best-t model provides an adequate description of the data. Using the multi-probe dataset, we measure m = 0:299 0:009 and 8 = 0:829 0:011. Within a CDM model we nd P m = 0:148 0:081 eV. We present a consistency test of the cosmic growth rate using SPT clusters. Allowing both the growth index and the dark energy equation of state parameter w to vary, we nd = 0:73 0:28 and w = 1:007 0:065, demonstrating that the expansion and the growth histories are consistent with a
Proceedings of SPIE | 2014
Thomas Essinger-Hileman; Aamir Ali; M. Amiri; J. W. Appel; Derek Araujo; C. L. Bennett; Fletcher Boone; Manwei Chan; H. M. Cho; David T. Chuss; Felipe Colazo; Erik Crowe; Kevin L. Denis; Rolando Dünner; Joseph R. Eimer; Dominik Gothe; M. Halpern; Kathleen Harrington; G. C. Hilton; G. Hinshaw; Caroline Huang; K. D. Irwin; Glenn Jones; John Karakla; A. Kogut; D. Larson; M. Limon; Lindsay Lowry; Tobias A. Marriage; Nicholas Mehrle
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitationalwave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low ɺ. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, Ƭ .
The Astrophysical Journal | 2013
Gilbert P. Holder; M. Viero; O. Zahn; K. A. Aird; B. A. Benson; Suman Bhattacharya; L. E. Bleem; J. J. Bock; M. Brodwin; J. E. Carlstrom; C. L. Chang; H. M. Cho; A. Conley; T. M. Crawford; A. T. Crites; T. de Haan; M. Dobbs; J. P. Dudley; E. M. George; N. W. Halverson; W. L. Holzapfel; S. Hoover; Z. Hou; J. D. Hrubes; R. Keisler; L. Knox; A. T. Lee; E. M. Leitch; M. Lueker; D. Luong-Van
We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~4σ level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 deg2 at wavelengths of 500, 350, and 250 μm. We show that these submillimeter (submm) wavelength maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7σ to 8.8σ. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b = 1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.