H.M. Leung
Hong Kong Baptist University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by H.M. Leung.
Marine Pollution Bulletin | 2014
H.M. Leung; Anna Oi Wah Leung; Hong-Sheng Wang; K.K. Ma; Y. Liang; K.C. Ho; K.C. Cheung; F. Tohidi; K.K.L. Yung
The major aim of this study was to investigate heavy metal content of edible fish in the PRD. Eleven species of fish (consisting of 711 individuals) [catfish (Clarias fuscus), tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idellus), bighead carp (Aristichthys nobilis), mandarin fish (Siniperca kneri), snakehead (Channa asiatiea), black bass (Micropterus salmoides), mangrove snapper (Lutjanus griseus), star snapper (Lutjanu stellatus), snubnose pompano (Trachinotus blochii) and orange-spotted grouper (Epinephelus coioides)] were collected for the analyses of heavy metals. Overall concentrations (mg/kg, ww) in the fish muscles were: As (0.03-1.53), Pb (0.03-8.62), Cd (0.02-0.06), Ni (0.44-9.75), Zn (15.7-29.5), Cr (0.22-0.65), Cu (0.79-2.26), Mn (0.82-6.91). Significant level of Pb were found in tilapia at all locations. It is recommended that heavy metal concentrations in different fish species must be determined on a regular basis in the future so as to reduce human health risks from acute and chronic food intoxication.
Chemosphere | 2013
Junli Hu; Shengchun Wu; Fuyong Wu; H.M. Leung; Xiangui Lin; Ming Hung Wong
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg(-1)) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot(-1)) was 4.3 times higher than that by ryegrass (1.5 μg pot(-1)). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21-38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.
Environmental Pollution | 2009
Fuyong Wu; H.M. Leung; Sheng Chun Wu; Z.H. Ye; Ming Hung Wong
Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg(-1), about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations.
Journal of Hazardous Materials | 2010
H.M. Leung; Fuyong Wu; K.C. Cheung; Z.H. Ye; Ming Hung Wong
The effects of arbuscular mycorrhizal (AM) fungi and phosphate rock on the phytorextraction efficiency of a hyperaccumulator (Pteris vittata) and a non-hyperaccumulator (Cynodon dactylon) plant were studied. Both seedlings were planted in As contaminated soil under different treatments [(1) control (contaminated soil only), (2) indigenous mycorrhizas (IM), (3) mixed AM inoculum [indigenous mycorrhiza + Glomus mosseae (IM/Gm)] and (4) IM/Gm + phosphate rock (P rock)] with varying intensities (40%, 70% and 100%) of water moisture content (WMC). Significant As reduction in soil (23.8% of soil As reduction), increase in plant biomass (17.8 g/pot) and As accumulation (2054 mg/kg DW) were observed for P. vittata treated with IM/Gm + PR at 100% WMC level. The overall results indicated that the synergistic effect of mycorrhiza and P rock affected As subcellular distribution of the hyperaccumulator and thereby altered its As removal efficiency under well-watered conditions.
Marine Pollution Bulletin | 2011
Hong-Sheng Wang; Jun Du; H.M. Leung; Anna Oi Wah Leung; Peng Liang; John P. Giesy; Chris K.C. Wong; Ming Hung Wong
Surface and core sediments collected from six mariculture farms in the Pearl River Delta (PRD) were analyzed to evaluate contamination levels of polychlorinated biphenyls (PCBs). The ∑PCBs (37 congeners) concentrations ranged from 5.10 to 11.0 ng g(-1) (mean 7.96 ng g(-1)) in surface and 3.19 to 22.1 ng g(-1) (mean 7.75 ng g(-1)) in core sediments, respectively. The concentrations were significantly higher than that measured in the sediments of their corresponding reference sites, whereby the average enrichment percentages were 62.0% and 42.7% in surface and core sediments, respectively. Significant correlations (R2=0.77, p<0.05) of PCB homologue group proportions between fish feeds and surface mariculture sediments suggested that fish feed input was probably the main source for the enrichment of PCBs. Due to the fact that PCBs could be transferred along food chains, PCB contamination in fish feeds and mariculture sediments should not be overlooked.
Chemosphere | 2013
H.M. Leung; Anna Leung; Z.H. Ye; K.C. Cheung; K.K.L. Yung
A greenhouse pot experiment was conducted to study the effects of three types of single inoculum [indigenous mycorrhizas (IM) isolated from As mine, Glomus mosseae (GM) and Glomus intraradices (GI)] and two types of mixed inoculum (mixed with IM and either GM or GI) on the growth response of Pteris vittata (hyperaccumulator) and Cynodon dactylon (non-hyperaccumulator) at three levels of As concentrations (0, 100 and 200mgkg(-1)). Both mycorrhizal plants exhibited significantly higher biomass, and N and P accumulation in its tissue than the control. Among the mycorrhizal inoculum, the mixed inoculum IM/GM promoted substantially higher mycorrhizal colonization and arsenate reductase activity in P. vittata than C. dactylon, among all As levels. The portion of Paris arbuscular mycorrhizal structure (observed in colonized roots) together with the highest As translocation factor of 10.2 in P. vittata inoculated with IM/GM was also noted. It was deduced that IM/GM inoculum may be the best choice for field inoculation at any contaminated lands as the inoculum exhibited better adaptation to variable environmental conditions and hence benefited the host plants.
International Journal of Phytoremediation | 2010
H.M. Leung; Fu Yong Wu; Kwai Chung Cheung; Zhi Hong Ye; Ming Hung Wong
This study investigated the contributions of mixed arbuscular mycorrhizal fungi (AMF) inoculum—i.e., mixed populations of indigenous mycorrhiza (Glomus intraradices, Glomus geosporum, Glomus mosseae) (IM) isolated from arsenic (As) contaminated soil and non-indigenous mycorrhiza such as G. mosseae (GM), which possess metal tolerance characteristics—and the addition of phosphate rock (PR) towards the uptake and accumulation of As by Pteris vittata (As hyperaccumlator) grown in As-contaminated soil. Regardless of As levels added to soil, plant growth was substantially improved in amended treatments when compared with the control. In addition, root surface area (0 mg/kg As: 15.2 cm2; 150 mg/kg As: 16.9 cm2; 300 mg/kg As: 20.7 cm2), chlorophyll contents (0 mg/kg As: 1.16 mg/g; 150 mg/kg As: 1.46 mg/g; 300 mg/kg As: 1.81 mg/g) and As translocation factor (0 mg/kg As: 0; 150 mg/kg As: 4.29; 300 mg/kg As: 5.22) in P. vittata of PR+IM/GM were also increased. Such combination could further enhance plant growth (indicated by higher N, P and chlorophyll contents) and As uptake by P. vittata.
Marine Pollution Bulletin | 2015
H.M. Leung; S.K.S. Leung; C.K. Au; K.C. Cheung; Y.K. Wong; Anna Oi Wah Leung; K.K.L. Yung
The objective of the study is to evaluate the effect of fish cultivation on water quality in fish culture zone (FCZ) and analysed by Principle Component Analysis (PCA). 120 surface water samples were collected from Hong Kong Waters (60 samples in Victoria Harbour and another 60 in Ma Wan FCZ). Significant difference was found in dissolved oxygen (MW: 59.6%; VH: 81.3%), and Escherichia coli (MW: 465 CFU/100 ml; VH: 162.5 CFU/100 ml). Three principle components are responsible for water quality variations in the studying sites. The first component included E. coli (0.625) and dissolved oxygen (0.701). The second included E. coli (0.387) and ammonical-nitrogen (0.571). The third included E. coli (0.194) and ammonical-nitrogen (0.287). This framework provides information to assess the relative contribution of eco-aquaculture to nutrient loads and the subsequent risk of eutrophication. To conclude, a rigorous monitoring of water quality is necessary to assess point and nonpoint source pollution. Besides, appropriate remediation techniques should be used to combat water pollution and achieve sustainability.
Marine Pollution Bulletin | 2017
J.T.K. Chan; H.M. Leung; Patrick Ying-Kit Yue; C.K. Au; Y.K. Wong; K.C. Cheung; Wai Chin Li; K.K.L. Yung
The up-to-date concentration of polycyclic aromatic hydrocarbons (PAHs) in sediment materials of Victoria Harbour was investigated so as to evaluate the pollution potential associated with the reclamation projects in Hong Kong. A total of 100 sediment samples were collected at 20 locations. Except the control point in reservoir, the PAHs concentrations were detectable levels all sites (131-628.3ng/g, dw) and such values were higher than Dutch Target and Intervention Values (the New Dutch standard in 2016). The PAHs concentration indicating that construction waste and wastewater discharges were the main pollutant sources. Results of correlation in single cell gel electrophoresis assay (comet assay) studies also revealed that the PAHs concentration was highly correlated (<0.01) with DNA migration (i.e. the length of tail moment of fish cells) in 5mg/ml of PAHs. The above observation indicates that the PAHs present in the sediment may substantially effect the marine ecosystem. Although the dredged sediment can be a useful sea-filling material for land reclamation; however, the continuing leaching of PAHs and its impact on the aquatic environment need to be studied further.
Chemosphere | 2007
K.C. Cheung; H.M. Leung; K.Y. Kong; M.H. Wong