Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H Malhotra is active.

Publication


Featured researches published by H Malhotra.


Medical Physics | 2011

Using an EPID for patient‐specific VMAT quality assurance

M Bakhtiari; L Kumaraswamy; D Bailey; S de Boer; H Malhotra; Matthew B. Podgorsak

PURPOSE A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). METHODS VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. RESULTS Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. CONCLUSIONS This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.


Journal of Applied Clinical Medical Physics | 2012

EPID dosimetry for pretreatment quality assurance with two commercial systems

D Bailey; L Kumaraswamy; M Bakhtiari; H Malhotra; Matthew B. Podgorsak

This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty‐six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%–2%) for all three dosimetry modalities, except in the case of off‐axis breast tangents. For these off‐axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously‐published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off‐axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the Portal Vision Dosimetry system. PACS numbers: 87.53.Bn, 87.53.Jw, 87.53.Kn, 87.55.Qr, 87.56.Fc, 87.57.uq


Journal of Medical Physics | 2009

Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform.

D Nazareth; Stephen Brunner; Matthew D. Jones; H Malhotra; M Bakhtiari

Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patients sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time.


International Journal of Radiation Oncology Biology Physics | 2002

Predictive value of linear-quadratic model in the treatment of cervical cancer using high-dose-rate brachytherapy

Brij Sood; Madhur Garg; Jai Avadhani; Giridhar R. Gorla; H Malhotra; Chandan Guha; Shivaji Deore; Bhadrasain Vikram

PURPOSE To determine whether a dose-response relationship exists between the biologic effective dose (BED) at Point A and the bladder and rectum and the clinical outcomes in our experience with external beam radiotherapy (EBRT) and high-dose-rate brachytherapy in the treatment of cervical carcinoma. METHODS AND MATERIALS This was a retrospective study. A total of 49 patients with cervical cancer were treated with a combination of EBRT (median 45 Gy, range 41.4-50.4) and high-dose-rate brachytherapy (median 18 Gy; range 18-19, in two fractions). Twenty-three patients received concomitant cisplatin-based chemotherapy. The cumulative BEDs were calculated at Point A (BED10) and at bladder and rectal reference points (BED3) using the linear-quadratic equation. The BED10 values, after incorporating a time factor (BED10tf) in the formula, were also calculated. RESULTS In patients treated with RT alone, the local failure rate was 10% (1 of 10) and 19% (3 of 16) in patients receiving a BED10 >89 Gy10 or <89 Gy10 to Point A, respectively (p = 0.2). The corresponding local failure rates were 20% (3 of 15) and 0% (0 of 8) in patients treated with concomitant chemotherapy (p = 0.3). In patients treated with RT alone, the local failure rate was 7.7% (1 of 13) and 23% (3 of 13) in patients with a BED10tf >64 Gy10 or <64 Gy10 (p = 0.1), respectively. The median BED3 values at the rectal and bladder point was 95.5 Gy3 and 103.6 Gy3, respectively. Only 1 case of Grade 2 late rectal toxicity (2%) and no late bladder toxicity occurred. CONCLUSION In patients treated with RT alone, a BED10 >89 Gy and a BED10tf >64 Gy indicated a trend toward a better local control rate. This difference was not observed in patients receiving chemotherapy. A BED3 <100 Gy3 was associated with negligible late toxicity. Although the BED10 in our study was about 10-15 Gy10 less than that in the published data, the 4-year local control rate of 80% and 83% and disease-free survival rate of 75% and 70% with and without chemotherapy, respectively, compare well with the rates in other studies in the literature.


Journal of Applied Clinical Medical Physics | 2005

Technical and Dosimetric Considerations in IMRT Treatment Planning for Large Target Volumes

H Malhotra; Sanjay Raina; J Avadhani; Steve F deBoer; Matthew B. Podgorsak

The maximum width of an intensity‐modulated radiotherapy (IMRT) treatment field is usually smaller than the conventional maximum collimator opening because of design limitations inherent in some multileaf collimators (MLCs). To increase the effective field width, IMRT fluences can be split and delivered with multiple carriage positions. However, not all treatment‐planning systems and MLCs support this technique, and if they do, the maximum field width in multiple carriage position delivery is still significantly less than the maximum collimator opening. For target volumes with dimensions exceeding the field size limit for multiple carriage position delivery, such as liver tumors or other malignancies in the abdominal cavity, IMRT treatment can be accomplished with multiple isocenters or with an extended treatment distance. To study dosimetric statistics of large field IMRT planning, an elliptical volume was chosen as a target within a cubic phantom centered at a depth of 7.5 cm. Multiple three‐field plans (one AP and two oblique beams with 160° between them to avoid parallel opposed geometry) with constraints designed to give 100% dose to the elliptical target were developed. Plans were designed with a single anterior field with dual carriage positions, or with the anterior field split into two fields with separate isocenters 8 cm apart with the beams being forcibly matched at the isocenter or with a 1 cm, 2 cm, 3 cm, and 4 cm overlap. The oblique beams were planned with a single carriage position in all cases. All beams had a nominal energy of 6 MV. In the dual isocenter plans, jaws were manually fixed and dose constraints remained unaltered. Dosimetric statistics were studied for plans developed for treatment delivery using both dynamic leaf motion (sliding window) and multiple static segments (step and shoot) with the number of segments varying from 5 to 30. All plans were analyzed based on the dose homogeneity in the isocenter plane, 2 cm anterior and 2 cm posterior to it, along with their corresponding dose‐volume histograms (DVHs). All the dual isocenter plans had slight underdosage anterior to the match point and slight overdosage posterior to it, while the dual carriage plan had a nice blending of the dose distribution without the accompanying hot or cold spots. Based on the dose statistics, it was noted that the dual isocenter plans can be clinically acceptable if they have at least a 3‐cm overlap. In the case of step and shoot IMRT, the number of segments used in a dual carriage plan was found to affect the overall plan dosimetric indices. PACS number: 87.53.Tf


Journal of Applied Clinical Medical Physics | 2014

A dosimetric comparison of three‐dimensional conformal radiotherapy, volumetric‐modulated arc therapy, and dynamic conformal arc therapy in the treatment of non‐small cell lung cancer using stereotactic body radiotherapy

Bradley M. Rauschenbach; Luke Mackowiak; H Malhotra

This study evaluates three‐dimensional conformal radiotherapy (3D CRT), volumetric‐ modulated arc therapy (VMAT), and dynamic conformal arc therapy (DCAT) planning techniques using dosimetric indices from Radiation Therapy Oncology Group (RTOG) protocols 0236, 0813, and 0915 for the treatment of early‐stage non‐small cell lung cancer (NSCLC) using stereotactic body radiotherapy (SBRT). Twenty‐five clinical patients, five per lung lobe, previously treated for NSCLC using 3D CRT SBRT under respective RTOG protocols were replanned with VMAT and DCAT techniques. All plans were compared using respective RTOG dosimetric indices. High‐ and low‐dose spillage improved for VMAT and DCAT plans, though only VMAT was able to improve dose to all organs at risk (OARs). DCAT was only able to provide a minimal improvement in dose to the heart and ipsilateral brachial plexus. Mean bilateral, contralateral, and V20 (percentage of bilateral lung receiving at least 20 Gy dose) doses were reduced with VMAT in comparison with respective 3D CRT clinical plans. Though some of the DCAT plans had values for the above indices slightly higher than their respective 3D CRT plans, they still were able to meet the RTOG constraints. VMAT and DCAT were able to offer improved skin dose by 1.1% and 11%, respectively. Monitor units required for treatment delivery increased with VMAT by 41%, but decreased with DCAT by 26%. VMAT and DCAT provided improved dose distributions to the PTV, but only VMAT was consistently superior in sparing dose to OARs in all the five lobes. DCAT should still remain an alternative to 3D CRT in facilities that do not have VMAT or intensity‐modulated radiotherapy (IMRT) capabilities. PACS numbers: 87.53.Ly, 87.55.dk, 87.55.D‐


Medical Physics | 2011

Dosimetric impact of image artifact from a wide‐bore CT scanner in radiotherapy treatment planning

Vincent Wu; Matthew B. Podgorsak; T Tran; H Malhotra; Iris Z. Wang

PURPOSE Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. METHODS Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. RESULTS Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show average CT number changes of up to -49 HU. Wider distribution (i.e., standard deviation) of the HU values was seen when the phantom was placed at more than 2.8 cm beyond the 50 cm sFOV. Anthropomorphic phantom studies with several standard beam configurations show that body contour distortion causes tumor dose calculation reduction of 3.0 and 1.9% for 6 and 23 MV x-rays, respectively, when not accounting for tissue heterogeneities during dose computation. When heterogeneity correction is used in planning, the competing effects of the body contour distortion and the CT number distortion cause a smaller error in tumor dose calculation. Less than 0.9% error in calculated dose was observed in volumetric modulated are therapy (VMAT) treatment plans. CONCLUSIONS The image artifacts from eFOV reconstruction alter the CT numbers and body contours of the imaged objects, which has the potential to produce inaccuracies in dose calculations during radiotherapy treatment planning. The radiation therapy team should be aware of these image artifacts and their effects on target dose calculations during CT simulation as well as treatment planning.


Brachytherapy | 2011

Measurement of dose perturbation around shielded ovoids in high-dose-rate brachytherapy

Mukhraj Hira; Matthew B. Podgorsak; Wainwright Jaggernauth; H Malhotra

PURPOSE To analyze the effect of tungsten shields present in a Fletcher-Suit-Delclos ovoid by comparing the dose distribution computed by a treatment planning system (TPS) to the delivered dose distribution measured by radiochromic film dosimetry. METHODS AND MATERIALS Gafchromic/EBT films were carefully wrapped around the caps (diameter 20-25 mm) of shielded as well as unshielded ovoids, including their anterior and posterior ends. The ovoids were irradiated to a dose of 300 cGy using a high-dose rate remote afterloading unit. The films were scanned using Vidar VXR-16 Scanner. The dose distribution in the planes above, below, and on the sides of the ovoid were compared with the dose distribution computed by TPS, which does not account for the presence of shields. RESULTS The dose distributions obtained about the unshielded ovoid from film dosimetry was in order of what is computed by TPS (90% measurements ± 5%, maximum 8%). The dose reduction in the anterior part of the shielded ovoid affects maximally the dose to the bladder where a reduction up to 20% was noted. The reduction of dose in the posterior part of the ovoid, which is designed to shield rectum was as high as 23%. Where the shields are not present, insignificant difference in the measured and computed dose values was noticed. CONCLUSIONS The TPS may substantially overestimate the dose to the bladder and rectum, including regions that lie in the shadow of the solid angle subtended by the shields if it does not account for the presence of tungsten shields.


Medical Dosimetry | 2009

Impact of Surface Curvature on Dose Delivery in Intraoperative High-Dose-Rate Brachytherapy

M Oh; Zhou Wang; H Malhotra; Wainwright Jaggernauth; Matthew B. Podgorsak

In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas (<or= 5 catheters) but, interestingly, the dose error was negligible for large treated areas (>5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.


Journal of Applied Clinical Medical Physics | 2007

Duplicating a tandem and ovoids distribution with intensity-modulated radiotherapy: a feasibility study

H Malhotra; J Avadhani; Steven deboer; Wainwright Jaggernauth; Michael Kuettel; Matthew B. Podgorsak

Brachytherapy plays an important role in the definitive treatment of cervical cancers by radiotherapy. In the present study, we investigated whether sliding‐window intensity‐modulated radiation therapy (IMRT) can achieve a pear‐shaped distribution with a similar sharp dose falloff identical to that of brachytherapy. The computed tomography scans of a tandem and ovoid patient were pushed to both a high dose rate (HDR) and an IMRT treatment planning system (TPS) after the rectum, bladder, and left and right femoral heads had been outlined, ensuring identical structures in both planning systems. A conventional plan (7 Gy in 5 fractions, defined as the average dose to the left and right point A) was generated for HDR treatment. The 150%, 125%, 100%, 75%, 50%, and 25% isodose curves were drawn on each slice and then transferred to the IMRT TPS. The 100% isodose envelope from the HDR plan was the target for IMRT planning. A 7‐field IMRT plan using 6‐MV X‐ray beams was generated and compared with the HDR plan using isodose conformity to the target and 125% volume, dose– volume histograms, and integral dose. The resulting isodose distribution demonstrated good agreement between the HDR and IMRT plans in the 100% and 125% isodose range. The dose falloff in the HDR plan was much steeper than that in the IMRT plan, but it also had a substantially higher maximum dose. Integral dose for the target, rectum, and bladder were found to be 6.69 J, 1.07 J, and 1.02 J in the HDR plan; the respective values for IMRT were 3.47 J, 1.79 J, and 1.34 J. Our preliminary results indicate that the HDR dose distribution can be replicated using a standard sliding‐window IMRT dose delivery technique for points lying closer to the three‐dimensional isodose envelope surrounding point A. Differences in radiobiology and patient positioning between the two techniques merit further consideration. PACS: 87.53.Jw

Collaboration


Dive into the H Malhotra's collaboration.

Top Co-Authors

Avatar

Matthew B. Podgorsak

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D Nazareth

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

M Bakhtiari

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jorge Gomez

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

S de Boer

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Z Wang

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

J Avadhani

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

L Kumaraswamy

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

M Oh

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge