Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Page McAdams is active.

Publication


Featured researches published by H. Page McAdams.


European Journal of Radiology | 2009

Chest tomosynthesis: Technical principles and clinical update

James T. Dobbins; H. Page McAdams

Digital tomosynthesis is a radiographic technique that can produce an arbitrary number of section images of a patient from a single pass of the X-ray tube. It utilizes a conventional X-ray tube, a flat-panel detector, a computer-controlled tube mover, and special reconstruction algorithms to produce section images. While it does not have the depth resolution of computed tomography (CT), tomosynthesis provides some of the tomographic benefits of CT but at lower cost and radiation dose than CT. Compared to conventional chest radiography, chest tomosynthesis results in improved visibility of normal structures such as vessels, airway and spine. By reducing visual clutter from overlying normal anatomy, it also enhances detection of small lung nodules. This review article outlines the components of a tomosynthesis system, discusses results regarding improved lung nodule detection from the recent literature, and presents examples of nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in clinical chest imaging are discussed.


Magnetic Resonance in Medicine | 2011

Diffusion-Weighted Hyperpolarized 129Xe MRI in Healthy Volunteers and Subjects with Chronic Obstructive Pulmonary Disease

S. Sivaram Kaushik; Zackary I. Cleveland; Gary P. Cofer; Gregory Metz; Denise Beaver; John Nouls; Monica Kraft; William F Auffermann; Jan Wolber; H. Page McAdams; Bastiaan Driehuys

Given its greater availability and lower cost, 129Xe apparent diffusion coefficient (ADC) MRI offers an alternative to 3He ADC MRI. To demonstrate the feasibility of hyperpolarized 129Xe ADC MRI, we present results from healthy volunteers (HV), chronic obstructive pulmonary disease (COPD) subjects, and age‐matched healthy controls (AMC). The mean parenchymal ADC was 0.036 ± 0.003 cm2 sec−1 for HV, 0.043 ± 0.006 cm2 sec−1 for AMC, and 0.056 ± 0.008 cm2 sec−1 for COPD subjects with emphysema. In healthy individuals, but not the COPD group, ADC decreased significantly in the anterior–posterior direction by ∼22% (P = 0.006, AMC; 0.0059, HV), likely because of gravity‐induced tissue compression. The COPD group exhibited a significantly larger superior–inferior ADC reduction (∼28%) than the healthy groups (∼24%) (P = 0.00018, HV; P = 3.45 × 10−5, AMC), consistent with smoking‐related tissue destruction in the superior lung. Superior–inferior gradients in healthy subjects may result from regional differences in xenon concentration. ADC was significantly correlated with pulmonary function tests (forced expiratory volume in 1 sec, r = −0.77, P = 0.0002; forced expiratory volume in 1 sec/forced vital capacity, r = −0.77, P = 0.0002; diffusing capacity of carbon monoxide in the lung/alveolar volume (VA), r = −0.77, P = 0.0002). In healthy groups, ADC increased with age by 0.0002 cm2 sec−1 year−1 (r = 0.56, P = 0.02). This study shows that 129Xe ADC MRI is clinically feasible, sufficiently sensitive to distinguish HV from subjects with emphysema, and detects age‐ and posture‐dependent changes. Magn Reson Med, 2010.


Medical Physics | 2008

Digital tomosynthesis of the chest for lung nodule detection: Interim sensitivity results from an ongoing NIH‐sponsored trial

James T. Dobbins; H. Page McAdams; Jae-Woo Song; Christina M. Li; D Godfrey; David M. DeLong; Sang-Hyun Paik; Santiago Martinez-Jimenez

The authors report interim clinical results from an ongoing NIH-sponsored trial to evaluate digital chest tomosynthesis for improving detectability of small lung nodules. Twenty-one patients undergoing computed tomography (CT) to follow up lung nodules were consented and enrolled to receive an additional digital PA chest radiograph and digital tomosynthesis exam. Tomosynthesis was performed with a commercial CsI/a-Si flat-panel detector and a custom-built tube mover. Seventy-one images were acquired in 11 s, reconstructed with the matrix inversion tomosynthesis algorithm at 5-mm plane spacing, and then averaged (seven planes) to reduce noise and low-contrast artifacts. Total exposure for tomosynthesis imaging was equivalent to that of 11 digital PA radiographs (comparable to a typical screen-film lateral radiograph or two digital lateral radiographs). CT scans (1.25-mm section thickness) were reviewed to confirm presence and location of nodules. Three chest radiologists independently reviewed tomosynthesis images and PA chest radiographs to confirm visualization of nodules identified by CT. Nodules were scored as: definitely visible, uncertain, or not visible. 175 nodules (diameter range 3.5-25.5 mm) were seen by CT and grouped according to size: < 5, 5-10, and > 10 mm. When considering as true positives only nodules that were scored definitely visible, sensitivities for all nodules by tomosynthesis and PA radiography were 70% (+/- 5%) and 22% (+/- 4%), respectively, (p < 0.0001). Digital tomosynthesis showed significantly improved sensitivity of detection of known small lung nodules in all three size groups, when compared to PA chest radiography.


PLOS ONE | 2010

Hyperpolarized 129Xe MR Imaging of Alveolar Gas Uptake in Humans

Zackary I. Cleveland; Gary P. Cofer; Gregory Metz; Denise Beaver; John Nouls; S. Sivaram Kaushik; Monica Kraft; Jan Wolber; Kevin T. Kelly; H. Page McAdams; Bastiaan Driehuys

Background One of the central physiological functions of the lungs is to transfer inhaled gases from the alveoli to pulmonary capillary blood. However, current measures of alveolar gas uptake provide only global information and thus lack the sensitivity and specificity needed to account for regional variations in gas exchange. Methods and Principal Findings Here we exploit the solubility, high magnetic resonance (MR) signal intensity, and large chemical shift of hyperpolarized (HP) 129Xe to probe the regional uptake of alveolar gases by directly imaging HP 129Xe dissolved in the gas exchange tissues and pulmonary capillary blood of human subjects. The resulting single breath-hold, three-dimensional MR images are optimized using millisecond repetition times and high flip angle radio-frequency pulses, because the dissolved HP 129Xe magnetization is rapidly replenished by diffusive exchange with alveolar 129Xe. The dissolved HP 129Xe MR images display significant, directional heterogeneity, with increased signal intensity observed from the gravity-dependent portions of the lungs. Conclusions The features observed in dissolved-phase 129Xe MR images are consistent with gravity-dependent lung deformation, which produces increased ventilation, reduced alveolar size (i.e., higher surface-to-volume ratios), higher tissue densities, and increased perfusion in the dependent portions of the lungs. Thus, these results suggest that dissolved HP 129Xe imaging reports on pulmonary function at a fundamental level.


Journal of Computer Assisted Tomography | 2003

Computed tomography of partial anomalous pulmonary venous connection in adults

Linda B. Haramati; Ilana E. Moche; Vivian T. Rivera; Pavni Patel; Laura E. Heyneman; H. Page McAdams; Henry J. Issenberg; Charles S. White

Objectives To systematically describe the imaging features and clinical correlates of a partial anomalous pulmonary venous connection diagnosed on computed tomography (CT) in adults. Methods Twenty-nine adults with a partial anomalous pulmonary venous connection on CT were retrospectively identified. There were 19 women and 10 men, with a mean age of 53 (range: 19–83) years. Four cases were identified by review of 1825 consecutive chest CT reports from July 2000–July 2001, and 25 cases were culled from chest radiology teaching files at 3 institutions. Inclusion criteria were availability of CT images and medical charts. Chest radiographs (25 of 29 cases) were reviewed for mediastinal contour abnormalities, heart size, and pulmonary vascular pattern. Chest CT scans were reviewed for location, size, and drainage site of the anomalous vein; presence or absence of a pulmonary vein in the normal location; cardiac size and configuration; and pulmonary vasculature. Charts were reviewed for evidence of pulmonary and cardiovascular disease, history of congenital heart disease, and results of other cardiac imaging. Results The prevalence of a partial anomalous pulmonary venous connection was 0.2% (4 of 1825 chest CT reports). Seventy-nine percent (23 of 29 patients) had an anomalous left upper lobe vein connecting to a persistent left vertical vein, only 5% (1 of 23 patients) of whom had a left upper lobe vein in the normal location. Seventeen percent (5 of 29 patients) had an anomalous right upper lobe vein draining into the superior vena cava, 60% (3 of 5 patients) of whom also had a right upper lobe pulmonary vein in the normal location. One patient (3%) had an anomalous right lower lobe vein draining into the suprahepatic inferior vena cava. Chest radiographic findings were abnormal left mediastinal contour in 64% (15 of 25 patients), abnormal right mediastinal contour in 8% (2 of 25 patients), and cardiomegaly in 24% (6 of 25 patients). Computed tomography findings were cardiomegaly in 48% (14 of 29 patients), right atrial enlargement in 31% (9 of 29 patients), right ventricular enlargement in 31% (9 of 29 patients), and pulmonary artery enlargement in 14% (4 of 29 patients). Pulmonary or cardiovascular symptoms were present in 69% (20 of 29 patients), 55% (11 of 20 patients) of whom had specific alternative diagnoses (excluding congestive heart failure and pulmonary hypertension) to explain the symptoms. Only 1 patient (3%) was diagnosed with a secundum atrial septal defect. Conclusions A partial anomalous pulmonary venous connection was seen in 0.2% of adults on CT. In contrast to previous series focusing on children, the anomalous vein in adults was most commonly from the left upper lobe, in women, and infrequently associated with atrial septal defects.


Radiographics | 2009

Imaging Appearances of the Sternum and Sternoclavicular Joints

Carlos S. Restrepo; Santiago Martinez; Diego F. Lemos; Lacey Washington; H. Page McAdams; Daniel Vargas; Julio A. Lemos; Jorge Carrillo; Lisa Diethelm

The sternum and sternoclavicular joints--critical structures of the anterior chest wall--may be affected by various anatomic anomalies and pathologic processes, some of which require treatment. Pectus excavatum and pectus carinatum are common congenital anomalies that are usually benign but may warrant surgical treatment if they cause compression of vital internal structures. By contrast, developmental variants such as the sternal foramen are asymptomatic and do not require further evaluation or treatment. Arthritides of the sternoclavicular joint (osteoarthritis, septic arthritis, and seronegative arthropathies) are common and must be differentiated before an appropriate management method can be selected. The recognition of complications of sternotomy (eg, sternal dehiscence, secondary osteomyelitis) is critical to avoid life-threatening sequelae such as acute mediastinitis. Likewise, the detection of sternal fractures and sternoclavicular dislocations is important, especially where they impinge on vital structures. In addition, sternal malignancies (most commonly, metastases and chondrosarcoma) must be distinguished from benign neoplasms. To achieve accurate and timely diagnoses that facilitate appropriate treatment, radiologists must be familiar with the appearances of these normal anatomic variants and diseases of the sternum.


Journal of Thoracic Imaging | 2008

Digital tomosynthesis of the chest.

James T. Dobbins; H. Page McAdams; D Godfrey; Christina M. Li

Digital tomosynthesis is a technique that generates an arbitrary number of section images of a patient from a single pass of the x-ray tube. It is under investigation for application to a number of clinical detection tasks, and has recently been implemented in commercial devices for chest radiography. Tomosynthesis provides improved visibility of structures in the chest, such as pulmonary nodules, airways, and spine. This review article outlines the components of a typical tomosynthesis system, and presents examples of improved pulmonary nodule detection from a clinical trial in human subjects. Possible implementation strategies for use in chest imaging are discussed.


Journal of Thoracic Imaging | 2001

Multidimensional imaging of the thorax: practical applications.

James G. Ravenel; H. Page McAdams; Martine Remy-Jardin; Jacques Remy

Over the past decade, faster CT scan times, thinner collimation, and the development of multirow detectors, coupled with the increasing capability of computers to process large amounts of data in short periods of time, have lead to an expansion in the ability to create diagnostically useful two-dimensional (2D) and three-dimensional (3D) images within the thorax. Applications within the thorax include, but are not limited to, evaluation of pulmonary and systemic vasculature, evaluation of the tracheobronchial tree, and delineation of diffuse lung disease. Pulmonary nodule volume and growth can be more accurately predicted, and represents an improvement in the evaluation of the solitary pulmonary nodule. Multiplanar images increase our understanding of thoracic anatomy and can help to guide bronchoscopic procedures. Because there are strengths and weaknesses to all the reconstruction algorithms, the utility of any given technique is dependent on the clinical question to be answered. For instance, although maximum intensity projection imaging (MIP) is helpful in the evaluation of micronodular lung disease, it is of little value in the diagnosis of aortic dissection. As the ability to generate faster and more precise multidimensional images grow, the demand for such imaging is likely to increase. In this review, the authors discuss the various reconstruction techniques available, followed by a discussion of the clinical applications.


Radiologic Clinics of North America | 2002

High-resolution CT of drug-induced lung disease

Jeremy J. Erasmus; H. Page McAdams; Santiago E. Rossi

Drug-induced pulmonary toxicity is increasing and early diagnosis is important because of the associated morbidity and mortality. Diagnosis is often difficult and is usually based on a history of drug therapy and exclusion of infection, radiation pneumonitis, and recurrence of the underlying disease. Although HRCT findings are frequently nonspecific, diagnosis can be facilitated by an understanding of the most common histopathologic and radiologic manifestations of drug-induced lung injury and knowledge of the drugs usually involved.


American Journal of Roentgenology | 2007

The Many Faces of Pulmonary Nontuberculous Mycobacterial Infection

Santiago Martinez; H. Page McAdams; Chandra S. Batchu

OBJECTIVE The purpose of this article is to review clinical and radiologic manifestations of pulmonary nontuberculous mycobacterial infection. CONCLUSION Common and well-recognized patterns of infection include cavitary and bronchiectatic disease and infection in AIDS patients. Less common or well-recognized manifestations include nodules or masses mimicking malignancy, hypersensitivity pneumonitis, and others. Definitive diagnosis can be difficult and patterns may overlap. Timely diagnosis requires a high index of suspicion and knowledge of the spectrum of clinical and radiologic features.

Collaboration


Dive into the H. Page McAdams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge