Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Peter Lorenz is active.

Publication


Featured researches published by H. Peter Lorenz.


Plastic and Reconstructive Surgery | 2002

Myogenic differentiation by human processed lipoaspirate cells.

Hiroshi Mizuno; Patricia A. Zuk; Min Zhu; H. Peter Lorenz; Prosper Benhaim; Marc H. Hedrick; James Chang; Anna A. Kuang

&NA; The use of undifferentiated cells for cell‐based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. For such strategies to succeed, a readily available source of myogenic precursor cells must be identified. We have previously shown that cells isolated from raw human lipoaspirates, called processed lipoaspirate cells, display multilineage mesodermal potential in vitro. Because human liposuctioned fat is available in large quantities and can be harvested with low morbidity, it may be an ideal source of stem cells for tissue‐engineering applications. In this study, processed lipoaspirate cells were isolated from raw lipoaspirates harvested from eight patients who underwent cosmetic surgery. Processed lipoaspirate cells were placed in promyogenic conditions for up to 6 weeks, and the expression of the myogenic markers MyoD1 and myosin heavy chain was confirmed by using structure, histology, and reverse transcriptase‐polymerase chain reaction. Histologic results were quantitated as an indicator or myogenic differentiation levels. We found that induced human processed lipoaspirate cells form multinucleated cells after 3 weeks of induction, indicative of the formation of myotubes. In addition, MyoD1 and skeletal muscle myosin heavy chain are expressed at distinct time points during differentiation with MyoD1 expression preceding expression of myosin. Finally, approximately 15 percent of human processed lipoaspirate cells can be induced toward myogenic differentiation 6 weeks after induction. In summary, our findings suggest that human processed lipoaspirate cells differentiate into myogenic cells. Furthermore, these cells may be a useful source for skeletal muscle engineering and repair.


Plastic and Reconstructive Surgery | 2003

IN VITRO DIFFERENTIATION OF HUMAN PROCESSED LIPOASPIRATE CELLS INTO EARLY NEURAL PROGENITORS

Peter Ashjian; Amir Elbarbary; Brian Edmonds; Daniel A. DeUgarte; Min Zhu; Patricia A. Zuk; H. Peter Lorenz; Prosper Benhaim; Marc H. Hedrick

Human processed lipoaspirate (PLA) cells are multipotent stem cells, capable of differentiating into multiple mesenchymal lineages (bone, cartilage, fat, and muscle). To date, differentiation to nonmesodermal fates has not been reported. This study demonstrates that PLA cells can be induced to differentiate into early neural progenitors, which are of an ectodermal origin. Undifferentiated cultures of human PLA cells expressed markers characteristic of neural cells such as neuron-specific enolase (NSE), vimentin, and neuron-specific nuclear protein (NeuN). After 2 weeks of treatment of PLA cells with isobutylmethylxanthine, indomethacin, and insulin, about 20 to 25 percent of the cells differentiated into cells with typical neural morphologic characteristics, accompanied by increased expression of NSE, vimentin, and the nerve-growth factor receptor trk-A. However, induced PLA cells did not express the mature neuronal marker, MAP, or the mature astrocyte marker, GFAP. It was also found that neurally induced PLA cells displayed a delayed-rectifier type K+ current (an early developmental ion channel) concomitantly with morphologic changes and increased expression of neural-specific markers. The authors concluded that human PLA cells might have the potential to differentiate in vitro into cells that represent early progenitors of neurons and/or glia.


World Journal of Surgery | 2003

Fetal wound healing: current biology.

Kelli M. Bullard; Michael T. Longaker; H. Peter Lorenz

The early-gestation fetus heals dermal wounds rapidly and scarlessly. This phenomenon appears to be intrinsic to fetal skin and independent of the intrauterine environment. Unique properties of fetal cells, extracellular matrix, cytokine profile, and gene expression contribute to scarless repair. An intensive research effort has focused on unraveling the mechanisms that underlie scarless fetal wound healing in an attempt to improve the quality of healing in both children and adults.


Plastic and Reconstructive Surgery | 2010

Scarless Fetal Wound Healing: A Basic Science Review

Barrett J. Larson; Michael T. Longaker; H. Peter Lorenz

SUMMARY Scar formation is a major medical problem that can have devastating consequences for patients. The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. Despite extensive investigation, the exact mechanisms of scarless fetal wound healing remain largely unknown. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. These differences may have important implications in scarless wound repair.


Plastic and Reconstructive Surgery | 2004

Chondrogenic potential of multipotential cells from human adipose tissue

Jerry I. Huang; Patricia A. Zuk; Neil F. Jones; Min Zhu; H. Peter Lorenz; Marc H. Hedrick; Prosper Benhaim

The use of stem cells for cell-based tissue-engineering strategies represents a promising alternative for the repair of cartilaginous defects. The multilineage potential of a population of putative mesodermal stem cells obtained from human lipoaspirates, termed processed lipoaspirate cells, was previously characterized. The chondrogenic potential of those cells was confirmed with a combination of histological and molecular approaches. Processed lipoaspirate cells under high-density micromass culture conditions, supplemented with transforming growth factor-&bgr;1, insulin, transferrin, and ascorbic acid, formed well-defined nodules within 48 hours of induction and expressed the cartilaginous markers collagen type II, chondroitin-4-sulfate, and keratan sulfate. Reverse transcription polymerase chain reaction analysis confirmed the expression of collagen type II and the cartilage-specific proteoglycan aggrecan. In summary, human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis in vitro.


American Journal of Pathology | 2000

Differential Expression of Fibromodulin, a Transforming Growth Factor-β Modulator, in Fetal Skin Development and Scarless Repair

Chia Soo; Fei-Ya Hu; Xinli Zhang; Yubert Wang; Steven R. Beanes; H. Peter Lorenz; Marc H. Hedrick; Richard J. Mackool; Ana Plaas; Soo-Jin Kim; Michael T. Longaker; Earl Freymiller; Kang Ting

Transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) has been implicated in the ontogenetic transition from scarless fetal repair to adult repair with scar. Generally, TGF-beta exerts its effects through type I and II receptors; however, TGF-beta modulators such as latent TGF-beta binding protein-1 (LTBP-1), decorin, biglycan, and fibromodulin can bind and potentially inhibit TGF-beta activity. To more fully explore the role of TGF-beta ligands, receptors, and potential modulators during skin development and wound healing, we have used a rat model that transitions from scarless fetal-type repair to adult-type repair with scar between days 16 and 18 of gestation. We showed that TGF-beta ligand and receptor mRNA levels did not increase during the transition to adult-type repair in fetal skin, whereas LTBP-1 and fibromodulin expression decreased. In addition, TGF-beta1 and -beta3; type I, II, and III receptors; as well as LTBP-1, decorin, and biglycan were up-regulated during adult wound healing. In marked contrast, fibromodulin expression was initially down-regulated in adult repair. Immunostaining demonstrated significant fibromodulin induction 36 hours after injury in gestation day 16, but not day 19, fetal wounds. This inverse relationship between fibromodulin expression and scarring in both fetal and adult rat wound repair suggests that fibromodulin may be a biologically relevant modulator of TGF-beta activity during scar formation.


Journal of Pediatric Surgery | 1995

A model of scarless human fetal wound repair is deficient in transforming growth factor beta

Kerry M. Sullivan; H. Peter Lorenz; Martin Meuli; Richard Y. Lin; N. Scott Adzick

Human fetal skin heals via scarless regeneration, whereas adult skin heals with scar. Scarless repair may reflect a distinct cytokine milieu. We studied the role of the cytokine transforming growth factor beta (TGF beta) using an established model of scarless human fetal skin repair in which human fetal skin is transplanted into a subcutaneous pocket on the flank of an adult nude mouse. In this model, wounded 16-week-gestation human fetal skin heals without scar, whereas wounded adult skin heals with scar. Seven days after transplantation, incisional wounds were made in the skin grafts. In the first phase of the study, wounds were harvested from 1 hour to 4 weeks postwounding, and immunohistochemistry was performed for TGF beta (isoform nonspecific), TGF beta 1, and TGF beta 2. Scarfree wounds in the fetal skin grafts did not show TGF beta staining. In contrast, wounds in adult grafts that heal with scar demonstrated isoform nonspecific TGF beta staining from 6 hours through 21 days, TGF beta 1 from 6 hours through 21 days, and TGF beta 2 from 12 hours through 7 days. In the second phase of the study, a slow-release disk with 0.01, 0.1, 1.0, or 10 micrograms of TGF beta 1 was placed beneath the fetal skin graft at the time of wounding. Fourteen days postwounding, there was marked scarring in the fetal grafts treated with TGF beta 1, and the size of the scar was proportional to the amount of TGF beta 1 applied.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Trauma-injury Infection and Critical Care | 1991

Emergency Thoracotomy: Survival Correlates with Physiologic Status

H. Peter Lorenz; Barry Steinmetz; Jeremy Lieberman; William P. Schecter; James R. Macho

Emergency thoracotomy is a standard procedure in the management of cardiac arrest in patients sustaining severe trauma. We examined the records of 463 moribund trauma patients treated at our institution from 1980 to 1990 to refine indications for emergency thoracotomy. Patients underwent thoracotomy either in the emergency department (ED) (n = 424) or in the operating room (OR) (n = 39) as a component of continuing resuscitation after hospital arrival. The survival rate was 13% (61 of 463) overall, 2% (3 of 193) for blunt, 22% (58 of 269) for all penetrating, 8% (10 of 131) for gunshot, 34% (48 of 141) for stab-wound patients, and 54% (21 of 39) for patients who underwent emergency thoracotomy in the OR. Survival correlated with the physiologic status of patients both on initial evaluation in the field by paramedics and on arrival at the ED. Patients with penetrating trauma and in profound shock (BP less than 60 mm Hg) or mild shock (BP 60-90 mm Hg) with subsequent cardiac arrest had survival rates of 64% (27 of 42) and 56% (30 of 54), respectively. None of the patients with absent signs of life, defined as full cardiopulmonary arrest with absent reflexes (n = 215), on initial assessment by paramedics in the field, survived. We conclude that (1) no emergency thoracotomy should be performed if no signs of life are present on the initial prehospital field assessment; (2) emergency thoracotomy is an indicated procedure in most patients sustaining penetrating trauma; (3) blunt traumatic cardiac arrest is a relative contraindication to emergency thoracotomy.


American Journal of Pathology | 2003

Ontogenetic Transition in Fetal Wound Transforming Growth Factor-β Regulation Correlates with Collagen Organization

Chia Soo; Steven R. Beanes; Fei-Ya Hu; Xinli Zhang; Catherine Dang; Grace Y. Chang; Yubert Wang; Ichiro Nishimura; Earl Freymiller; Michael T. Longaker; H. Peter Lorenz; Kang Ting

Fetal rat skin transitions from scarless fetal-type repair to adult-type repair with scar between day 16 (E16) and day 18 (E18) of gestation (term = 21.5 days). Deficient transforming growth factor (TGF)-beta 1 and -beta 2 injury response has been proposed as a mechanism for scarless fetal-type repair. However, previous fetal studies have inconsistently reported the degree of TGF-beta induction after injury. To minimize developmental variables in fetal versus adult TGF-beta regulation, we narrowed our study to wounded fetal animals. We hypothesize that TGF-beta ligand and receptor expression will be differentially regulated during the transition from early gestation (E16) wounds manifesting scarless fetal-type repair to late gestation (E19) wounds manifesting adult-type repair with scar. In this study, decreased and rapidly cleared TGF-beta 1 and -beta 2 expression accompanied by increased and prolonged TGF-beta 3 levels in wounded E16 animals correlated with organized collagen deposition. In contrast, increased and prolonged TGF-beta 1 and -beta 2 expression accompanied by decreased and delayed TGF-beta 3 expression in wounded E19 animals correlated with disorganized collagen architecture. Similarly, expression of TGF-beta receptors type I and II were also increased or prolonged in E19 animals. Our results implicate increased TGF-beta 1, -beta 2, and decreased TGF-beta 3 expression, as well as increased type I and II receptor expression in late gestation fetal scar formation.


Advances in Clinical Chemistry | 2009

Chapter 6 Fetal Skin Wound Healing

Edward P. Buchanan; Michael T. Longaker; H. Peter Lorenz

1. Abstract The developing fetus has the ability to heal wounds by regenerating normal epidermis and dermis with restoration of the extracellular matrix (ECM) architecture, strength, and function. In contrast, adult wounds heal with fibrosis and scar. Scar tissue remains weaker than normal skin with an altered ECM composition. Despite extensive investigation, the mechanism of fetal wound healing remains largely unknown. We do know that early in gestation, fetal skin is developing at a rapid pace and the ECM is a loose network facilitating cellular migration. Wounding in this unique environment triggers a complex cascade of tightly controlled events culminating in a scarless wound phenotype of fine reticular collagen and abundant hyaluronic acid. Comparison between postnatal and fetal wound healing has revealed differences in inflammatory response, cellular mediators, cytokines, growth factors, and ECM modulators. Investigation into cell signaling pathways and transcription factors has demonstrated differences in secondary messenger phosphorylation patterns and homeobox gene expression. Further research may reveal novel genes essential to scarless repair that can be manipulated in the adult wound and thus ameliorate scar.

Collaboration


Dive into the H. Peter Lorenz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge