Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. R. Boerma is active.

Publication


Featured researches published by H. R. Boerma.


Theoretical and Applied Genetics | 1996

Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit

S. H. Lee; M. A. Bailey; M. A. R. Mian; E. R. Shipe; D. A. Ashley; Wayne A. Parrott; Richard S. Hussey; H. R. Boerma

The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and ‘Coker 237’. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.


Theoretical and Applied Genetics | 2001

SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode

Zenglu Li; L. Jakkula; Richard S. Hussey; J. P. Tamulonis; H. R. Boerma

Abstractu2002Root-knot nematodes (Meloidogyne spp.) can cause severe yield loss of soybean [Glycine max (L.) Merr.] in the southern production region of the USA. Planting root-knot nematode-resistant cultivars is the most effective method of preventing yield loss. DNA marker-assisted breeding may accelerate the development of root-knot nematode-resistant cultivars. RFLP markers have previously been used to identify quantitative trait loci (QTLs) conferring resistance to southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood] (Mi) in a F2:3 soybean population created by crossing the resistant PI96354 and the susceptible ’Bossier.’ A major QTL on linkage group (LG) O conditioning 31% of the variation in Mi gall number and a minor QTL on LG-G conditioning 14% of the gall variation were reported. With the development of SSR markers for soybean improvement, a higher level of mapping resolution and semi-automated detection has become possible. The objectives of this research were: (1) to increase the marker density in the genomic regions of the QTLs for Mi resistance on LG-O and LG-G with SSR markers; and (2) to confirm the effect of the QTLs in a second population and a different genetic background. With SSR markers, the QTL on LG-O was flanked by Satt492 and Satt358, and on LG-G by Satt012 and Satt505. Utilizing SSR markers flanking the two QTLs, marker-assisted selection was performed in a second F2:3 population of PI96354× Bossier. Results confirmed the effectiveness of marker-assisted selection to predict the Mi phenotypes. By screening the BC2F2 population of Prichard (3)×G93–9009 we confirmed that selection for the minor QTL on LG-G with flanking SSR markers would enhance the resistance of lines containing the major QTL (which is most-likely Rmi1).


Theoretical and Applied Genetics | 2001

Genetic mapping of QTLs conditioning soybean sprout yield and quality

Sun-Kyung Lee; K. Y. Park; H. Lee; Eui Ho Park; H. R. Boerma

Abstractu2002Soybean sprouts have been used as a food in the Orient since ancient times. In this study, 92 restriction fragment length polymorphism (RFLP) loci and two morphological markers (W1 and T) were used to identify quantitative trait loci (QTLs) associated with soybean sprout-related traits in 100 F2-derived lines from the cross of ’Pureunkong’×’Jinpumkong 2’. The genetic map consisted of 76 loci which covered about 756 cM and converged into 20 linkage groups. Eighteen markers remained unlinked. Phenotypic data were collected in 1996 and 1997 for hypocotyl length, percentage of abnormal seedlings, and sprout yield 6 days after germination at 20°C. Hypocotyl length was determined as the average length from the point of initiation of the first secondary root to the point of attachment of the cotyledons. The number of decayed seeds and seedlings, plus the number of stunted seedlings (less than 2-cm growth), was recorded a s abnormal seedlings. Seed weight was determined based on the 50-seed sample. Sprout yield was recorded as the total fresh weight of soybean sprouts produced from the 50-seed sample divided by the dry weight of the 50-seed sample. Four QTLs were associated with sprout yield in the combined analysis across 2 years. For the QTL linked to L154 on the Linkage Group (LG) G the positive allele was derived from Pureunkong (R2= 0.19), whereas at the other three QTLs (A089 on LG B1, A668n on LG K and B046 on LG L) the positive alleles were from Jinpumkong 2. QTLs conditioning seed weight were linked to markers A802n (LG B1), A069 (LG E), Cr321 (LG F) and A235 (LG G). At these four markers, the Jinpumkong allele increased seed weight. Markers K011n on LG B1, W1 on LG F and A757 on LG L were linked to QTLs conditioning hypocotyl length; and Bng119, K455n and K418n to QTLs conditioning the abnormal seedlings. The QTLs conditioning sprout yield were in the same genomic locations as the QTLs for seed weight identified in this population or from previously published research, indicating that QTLs for sprout yield are genetically linked to seed-weight QTLs or else that seed-weight QTLs pleiotropically condition sprout yield. These data demonstrate that effective marker-assisted selection may be feasible for enhancing sprout yield in a soybean. The transgressive segregation of sprout yield, as well as the existence of two QTLs conditioning greater than 10% of the phenotypic variation in sprout yields provides an opportunity to select for progeny lines with a greater sprout yield than currently preferred cultivars such as Pureunkong.


Theoretical and Applied Genetics | 1997

DNA marker analysis of loci conferring resistance to peanut root-knot nematode in soybean

John P. Tamulonis; B. M. Luzzi; Richard S. Hussey; Wayne A. Parrott; H. R. Boerma

Abstractu2002Peanut root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] (Ma) is a serious pathogen of soybean, Glycine max L. Merrill, in the southern USA. Breeding for root-knot nematode resistance is an important objective in many plant breeding programs. The inheritance of soybean resistance to Ma is quantitative and has a moderate-to-high variance-component heritability on a family mean basis. The objectives of the present study were to use restriction fragment length polymorphism (RFLP) markers to identify quantitative trait loci (QTLs) conferring resistance to Ma and to determine the genomic location and the relative contribution to resistance of each QTL. An F2 population from a cross between PI200538 (Ma resistant) and ‘CNS’ (Ma susceptible) was mapped with 130 RFLPs. The 130 markers converged on 20 linkage groups spanning a total of 1766 cM. One hundred and five F2:3 families were grown in the greenhouse and inoculated with Ma Race 2. Two QTLs conferring resistance to Ma were identified and PI200538 contributed the alleles for resistance at both QTLs. One QTL was mapped at 0-cM recombination with marker B212V-1 on linkage group-F (LG-F) of the USDA/ARS-Iowa State University RFLP map, and accounted for 32% of the variation in gall number. Another QTL was mapped in the interval from B212D-2 to A111H-2 on LG-E, and accounted for 16% of the variation in gall number. Gene action for the QTL located on LG-F was additive to partially dominant, whereas the gene action for the QTL on LG-E was dominant with respect to resistance. The two QTLs, when fixed on the framework map, accounted for 51% of the variation in gall number in a two-QTL model. The two QTLs for Ma resistance were found in duplicated regions of the soybean genome, and the major QTL for Ma resistance on LG-F is positioned within a cluster of eight diverse disease-resistance loci.


Theoretical and Applied Genetics | 2008

Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines

S. Zhu; David R. Walker; H. R. Boerma; J. N. All; Wayne A. Parrott

The crystal proteins coded by transgenes from Bacillus thuringiensis (Bt) have shown considerable value in providing effective insect resistance in a number of crop species, including soybean, Glycine max (L.) Merr. Additional sources of soybean insect resistance would be desirable to manage the development of tolerance/resistance to crystal proteins by defoliating insects and to sustain the deployment of Bt crops. The objective of this study was to evaluate the effects and interactions of three insect resistance quantitative trait loci (QTLs; QTL-M, QTL-H, and QTL-G) originating from Japanese soybean PI 229358 and a cry1Ac gene in a “Benning” genetic background. A set of 16 BC6F2-derived near isogenic lines (NILs) was developed using marker-assisted backcrosses and evaluated for resistance to soybean looper [SBL, Pseudoplusia includens (Walker)] and corn earworm [CEW, Helicoverpa zea (Boddie)] in field cage, greenhouse, and detached leaf assays. Both Bt and QTL-M had significantly reduced defoliation by both SBL and CEW and reduced larval weight of CEW. The antibiosis QTL-G had a significant effect on reducing CEW larval weight and also a significant effect on reducing defoliation by SBL and CEW in some assays. The antixenosis QTL-H had no main effect, but it appeared to function through interaction with QTL-M and QTL-G. Adding QTL-H and QTL-G further enhanced the resistance of the Bt and QTL-M combination to CEW in the field cage assay. These results should help guide the development of strategies for effective management of insect pests and for sustainable deployment of Bt genes.


Journal of Economic Entomology | 2008

Seed Yield of Near-Isogenic Soybean Lines with Introgressed Quantitative Trait Loci Conditioning Resistance to Corn Earworm (Lepidoptera: Noctuidae) and Soybean Looper (Lepidoptera: Noctuidae) from PI 229358

C. V. Warrington; S. Zhu; Wayne A. Parrott; J. N. All; H. R. Boerma

Abstract The development of superior soybean, Glycine max (L.) Merr., cultivars exhibiting resistance to insects has been hindered due to linkage drag, a common phenomenon when introgressing alleles from exotic germplasm. Simple-sequence repeat (SSR) markers were used previously to map soybean insect resistance (SIR) quantitative trait loci (QTLs) in a ‘Cobb’ × PI 229358 population, and subsequently used to create near-isogenic lines (NILs) with SIR QTL in a ‘Benning’ genetic background. SIR QTLs were mapped on linkage groups (LGs) M (SIRQTL-M), G (SIRQTL-G), and H (SIRQTL-H). The objectives of this study were to 1) evaluate linkage drag for seed yield by using Benning-derived NILs selected for SIRQTL-M, SIRQTL-H, and SIRQTL-G; 2) assess the amount of PI 229358 genome surrounding the SIR QTL in each Benning NIL; and 3) evaluate the individual effects these three QTLs on antibiosis and antixenosis to corn earworm, Helicoverpa zea (Boddie), and soybean looper, Pseudoplusia includens (Walker). Yield data collected in five environments indicated that a significant yield reduction is associated with SIRQTL-G compared with NILs without SIR QTL. Overall, there was no yield reduction associated with SIRQTL-M or SIRQTL-H. A significant antixenosis and antibiosis effect was detected for SIRQTL-M in insect feeding assays, with no effect detected in antixenosis or antibiosis assays for SIRQTL-G or SIRQTL-H without the presence of PI 229358 alleles at SIRQTL-M. These results support recent findings concerning these loci.


Plant Molecular Biology Reporter | 2009

Construction of a BAC Library for a Defoliating Insect-Resistant Soybean and Identification of Candidate Clones Using a Novel Approach

S. Zhu; C. A. Saski; H. R. Boerma; J. P. Tomkins; J. N. All; Wayne A. Parrott

Positional cloning of an insect-resistance quantitative trait locus (QTL) requires the construction of a large-insert genomic DNA library from insect-resistant genotypes. To facilitate cloning of a major defoliating insect-resistance QTL on linkage group M of the soybean genetic map, a bacterial artificial chromosome (BAC) library for PI 229358 was constructed and characterized. The HindIII BAC library contains 55,296 clones with an average insert size 131xa0kb. This library represents a 6-fold soybean haploid genome equivalents, allowing a 99.8% probability of recovering any specific sequence of interest in soybean. BAC filters were screened with a genomic DNA probe Sat_258sc2 obtained through genome walking from flanking sequences of a simple sequence repeat (SSR) marker, Sat_258, which links to the insect-resistance QTL. Thirteen BAC clones were identified positive for Sat_258sc2, and two of them were confirmed to carry Sat_258. The results suggest that this library is useful in positional cloning of the major insect-resistance QTL, and the approach presented here can be used to screen a BAC library for a SSR marker without requiring the creation of BAC pools.


Journal of Agricultural and Food Chemistry | 2016

Suitability of Soybean Meal from Insect-Resistant Soybeans for Broiler Chickens

María A. Ortega; Davis Aj; H. R. Boerma; Wayne A. Parrott

Benning(M) and Benning(MGH) are near-isogenic lines (NILs) of the soybean cultivar Benning, which contain insect-resistance quantitative trait loci (QTLs) from the soybean accession PI 229358. Benning(M) contains QTL-M, which confers antibiosis and antixenosis. In addition to QTL-M, Benning(MGH) contains QTL-G, which confers antibiosis, and QTL-H, which confers antixenosis. Soybean meal was produced from Benning and the NILs. Nutritional composition, digestible amino acid content, and nitrogen-corrected true metabolizable energy (TMEN) were equivalent among soybean meals. A 21-day broiler feeding trial was carried out to determine if the QTLs affect soybean meal quality. Weight gain and feed-to-gain ratio were evaluated. No biologically significant differences were detected for broilers fed Benning, Benning(M), and Benning(MGH). This demonstrates that soybean meal produced from the insect-resistant NILs is equivalent to soybean meal produced from their non-insect-resistant parent cultivar for broiler weight gain.


Archive | 2008

Methods to identify soybean aphid resistant quantitative trait loci in soybean and compositions thereof

Vergel Concibido; James Narvel; Jennifer Yates; H. R. Boerma


Archive | 2008

Methods and Compositions for Selecting Soybean Plants Resistant to Southern Root Knot Nematode

James Narvel; Vergel Concibido; Liesa Cerny; John P. Tamulonis; Floyd Hancock; Richard Dougherty; H. R. Boerma; Bo-Keun Ha

Collaboration


Dive into the H. R. Boerma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. N. All

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge