Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H.R. Hadad is active.

Publication


Featured researches published by H.R. Hadad.


Journal of Hazardous Materials | 2011

Bioaccumulation kinetics and toxic effects of Cr, Ni and Zn on Eichhornia crassipes.

H.R. Hadad; M.A. Maine; M. M. Mufarrege; M.V. Del Sastre; G. A. Di Luca

The aim of this work was to assess the uptake efficiencies, the uptake and bioaccumulation kinetics and the toxic effects of Cr, Ni and Zn on Eichhornia crassipes. Plants were exposed to 1 mg L(-1) of each metal and sampled during 30 days. E. crassipes removed 81%, 95% and 70% of Cr, Ni and Zn, respectively. Metal removal from water involved a fast and a slow component. Metals were accumulated fundamentally by roots. Cr was scarcely translocated to aerial parts. In these tissues, Ni showed the highest accumulation amount while Zn presented the highest accumulation rate. Metal toxicity on the biomass was different among treatments. However, biomass did not decrease in any case. All the studied metals produced chlorophyll decrease. The root cross-sectional area (CSA) and vessel number increased and the root length decreased when plants were exposed to Zn. Despite the toxic effects, E. crassipes accumulated Cr, Ni and Zn efficiently.


International Journal of Phytoremediation | 2014

Improvement of Cr phytoremediation by Pistia stratiotes in presence of nutrients.

G. A. Di Luca; H.R. Hadad; M. M. Mufarrege; M.A. Maine; G.C. Sánchez

The effects of different concentrations of P and N, added separately or combined, on the Cr(III) accumulation capacity of P. stratiotes were studied. Plants and pond water with the addition of contaminant(s) were placed in plastic aquaria. Cr concentration was 5 mg L–1, while P and N concentrations were 5 mg L–1or 10 mg L–1. Nutrient addition significantly favoured Cr removal and enhanced Cr translocation to leaves. In Cr treatments a high detritus formation from loss of root biomass was observed probably due to its toxicity. Cr was mainly accumulated in the detrital fraction, whereas P and N were retained fundamentally in leaves. A toxic effect was observed in the Cr + P10 and Cr + N10 treatments. These results could be applied to enhance Cr removal efficiency of constructed wetlands using P. stratiotes, where nutrient enrichment could be attained by treating sewage together with the industrial effluents.


Ecotoxicology and Environmental Safety | 2014

Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn

M. M. Mufarrege; H.R. Hadad; G. A. Di Luca; M.A. Maine

Typha domingensis was exposed to a 100mgL(-1) Cr+100mgL(-1) Ni+100mgL(-1) Zn solution. Metal tolerance and metal accumulation in plant tissues and sediment were studied over time. Although removal rates were different, the three metals were efficiently removed from water. Leaf and root tissues showed high metal concentration. However, the sediment showed the highest accumulation. During the first hours of contact, metals were not only accumulated by sediment and roots but they were also taken up by the leaves in direct contact with the solution. Over time, metals were translocated from roots to leaves and vice versa. Metals caused growth inhibition and a decrease in chlorophyll concentration and affected anatomical parameters. Despite these sub-lethal effects, T. domingensis demonstrated that it could accumulate Cr, Ni and Zn efficiently and survive an accidental dump of high concentrations of contaminants in systems such as natural and constructed wetlands.


Chemosphere | 2015

Influence of Typha domingensis in the removal of high P concentrations from water

G. A. Di Luca; M.A. Maine; M. M. Mufarrege; H.R. Hadad; Carlos Bonetto

A greenhouse experiment was conducted to evaluate the removal of high P concentration from water by vegetated and unvegetated wetlands. Reactors containing 4 kg of sediment and two plants of Typha domingensis (vegetated treatments) and reactors containing only sediment (unvegetated treatments) were arranged. Reactors were dosed with 100 and 500 mg L(-1) of P-PO4. The studied concentrations tried to simulate an accidental dump. Controls without P addition were also disposed. Water samples were collected periodically and analyzed for phosphorus. Sediment (0-3 (surface), 3-7 (medium) and 7-10 cm (deep)) and plant samples (roots, rhizomes, submerged leaves and aerial leaves) were collected at the beginning and at end of the experiment and were analyzed for total phosphorus. P fractionation was performed in the surface sediment layer. Relative growth rate (RGR) was calculated in each treatment considering initial and final plant height. P was efficiently removed from water in both, vegetated and unvegetated treatments. However, the major P removal was achieved in vegetated treatments. T. domingensis has a high capacity to tolerate and accumulate high P concentrations, especially in leaves, causing P accumulation in sediment to be significantly low in vegetated treatments. P accumulation was produced in the surface sediment layer (0-3 cm) in all treatments, mainly retained as iron-bound P. Present results point the large removal capacity of phosphate of systems planted with T. domingensis. Therefore T. domingensis is suitable for phytoremediation practice, being capable to tolerate high P concentration.


Science of The Total Environment | 2019

Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: Microcosms and field scale experiments

M.A. Maine; G.C. Sánchez; H.R. Hadad; S.E. Caffaratti; M.C. Pedro; M. M. Mufarrege; G.A. Di Luca

Wastewater from a fertilizer manufacturing plant requires improvement prior to its environmental disposal. Ammonium is the critical contaminant to be removed. The aim of this study was to evaluate the feasibility of using free water surface wetlands (FWSWs), horizontal subsurface flow wetlands (HSSFWs), and their combination in hybrid wetlands (HWs) for the final treatment of wastewater with high ammonium concentration from a fertilizer manufacturing plant. Substrates and macrophytes were evaluated in microcosm experiments during three months. There were no significant differences in contaminant removal among HSSFWs with LECA or FWSWs planted with Typha domingensis or Canna indica. In a second stage, two configurations of pilot-scale HWs were constructed at the manufacturing facilities. Configuration A: HSSFW(A1)-FWSW(A2) and Configuration B: FWSW(B1)-HSSFW(B2) were evaluated during 12 months. There were no significant differences in contaminant removal (%) between the two configurations of HWs for COD (A: 74.5 ± 12.2/B: 81.5 ± 9.4), ammonium (A: 59.5 ± 17.5/B: 57.9 ± 21.4), nitrite (A: 79.8 ± 24.2/B: 80.6 ± 16.8) and dissolved inorganic nitrogen (DIN) (A: 59.4 ± 17.3/B: 50.3 ± 24.4). However, nitrate concentration (9.83 ± 3.11 mg N L-1) was significantly lower after Configuration A than after Configuration B (18.8 ± 5.2 mg N L-1). Comparing FWSWs and HSSFWs, they did not present significant differences in ammonium removal, while FWSWs presented the highest DIN removal. T. domingensis and C. indica in HSSFWs and T. domingensis in FWSWs tolerated wastewater conditions. T. domingensis presented the highest productivity. In further research, FWSWs in series planted with T. domingensis should be studied.


Science of The Total Environment | 2019

Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland

G.A. Di Luca; M. M. Mufarrege; H.R. Hadad; M.A. Maine

The aim of this work was to study the efficiency of microcosms-scale floating treatment wetlands (FTWs) in the N and P removal from a synthetic runoff effluent and to evaluate the effluent tolerance of Typha domingensis. Each FTW consisted of a raft constructed with a plastic net where T. domingensis plants were installed. In order to evaluate the plant role, reactors with FTWs and without FTWs (controls) were used. P and N additions were carried out as follows: 5 mg L-1 P (P5 and P5-control); 10 mg L-1 N (N10 and N10-control); 5 mg L-1 P + 10 mg L-1 N (P5N10 and P5N10-control). Also, a biological control (B-control) without contaminant addition was used. The removal of soluble reactive phosphorus and total phosphorus were significantly higher in the FTWs than in the controls. Ammonium and nitrate concentrations were not significantly different between FTWs and controls at the end of the experiment. However, nitrate concentrations showed significant differences between FTWs and controls during the experiment. N and P were mainly accumulated in plant tissues and not in the sediment. Plants tolerated the effluent conditions and showed a positive growth rate. The use of FTWs is a promising strategy for the sustainable treatment of water bodies affected by runoff waters.


Water Science and Technology | 2018

Salinity and pH effects on floating and emergent macrophytes in a constructed wetland

H.R. Hadad; M. M. Mufarrege; G. A. Di Luca; M.A. Maine

Salvinia herzogii, Pistia stratiotes and Eichhornia crassipes (floating species) were the dominant macrophytes in a constructed wetland (CW) over the first years of operation. Later, the emergent Typha domingensis displaced the floating species, becoming dominant. The industrial effluent treated at this CW showed high pH and salinity. The aim of this work was to study the tolerance of floating species and T. domingensis exposed to different pH and salinity treatments. Treatments at pH 8, 9, 10 and 11 and salinities of 2,000; 3,000; 4,000; 6,000; and 8,000 mg L-1 were performed. Floating macrophytes were unable to tolerate the studied pH and salinity ranges, while T. domingensis tolerated higher pH and salinity values. Many industrial effluents commonly show high pH and salinity. T. domingensis demonstrated to be a suitable macrophyte to treat this type of effluents.


Environmental Science and Pollution Research | 2018

Macrophytes as potential biomonitors in peri-urban wetlands of the Middle Parana River (Argentina)

Xenia Alonso; H.R. Hadad; Carlos Córdoba; Wanda Polla; María Silvina Reyes; Viviana Fernández; Inés Granados; Luis Marino; Andrea Villalba

The aims of this study were to measure the concentrations of nutrients and pollutants in peri-urban wetlands, to analyze the plant morphology of the most representative macrophyte species, and to determine their potential use as biomonitors. Four wetlands in the Middle Paraná River floodplain evidencing contamination or anthropogenic impact were studied. The studied species were Typha domingensis Pers., Eichhornia crassipes (Mart.) Solms., Alternanthera philoxeroides (Mart.) Griseb., and Pistia stratiotes L. Besides, the same plant species from an uncontaminated wetland considered as control were studied. A. philoxeroides showed the highest total phosphorus (TP) concentration in leaves throughout the study, while the other species showed a higher TP concentration in roots than in leaves. Since metal concentration in A. philoxeroides tissues was always higher than in sediment, further studies focused on its phytoremediation capacity should be carried out. T. domingensis exhibited the highest Zn concentrations in roots followed by Pb, and E. crassipes presented the highest values of Pb concentrations in roots. The aerial part height of the plants from peri-urban wetlands was significantly higher than that of the plants from the control, while the root length was significantly lower. The root length of P. stratiotes showed a negative correlation with soluble reactive phosphorus (SRP) concentration in water. All the root anatomical parameters of T. domingensis and E. crassipes showed a positive correlation with nitrate and ammonium concentrations in water. The studied macrophytes evidenced a high tolerance, enabling them to grow and survive in peri-urban wetlands that receive pollution from different sources. The use of aquatic and wetland plants as contaminant bioindicators and bioaccumulators in the Middle Paraná River floodplain is completely feasible.


Ecological Engineering | 2006

Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry

M.A. Maine; N. Suñe; H.R. Hadad; G.C. Sánchez; Carlos Bonetto


Journal of Environmental Management | 2009

Influence of vegetation on the removal of heavy metals and nutrients in a constructed wetland

M.A. Maine; N. Suñe; H.R. Hadad; G. Sánchez; Carlos Bonetto

Collaboration


Dive into the H.R. Hadad's collaboration.

Top Co-Authors

Avatar

M.A. Maine

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

M. M. Mufarrege

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

G. A. Di Luca

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

G.C. Sánchez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Bonetto

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

M.C. Pedro

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

S.E. Caffaratti

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.I. González

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Cesar Iván González

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge