Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. S. Dattaraja is active.

Publication


Featured researches published by H. S. Dattaraja.


Science | 2006

The Importance of Demographic Niches to Tree Diversity

Richard Condit; Peter S. Ashton; Sarayudh Bunyavejchewin; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Robin B. Foster; I. A. U. N. Gunatilleke; C. V. S. Gunatilleke; Pamela Hall; Kyle E. Harms; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Sabrina E. Russo; Raman Sukumar; Cristián Samper; Hebbalalu S. Suresh; Sylvester Tan; Sean C. Thomas; Renato Valencia; Martha Isabel Vallejo

Most ecological hypotheses about species coexistence hinge on species differences, but quantifying trait differences across species in diverse communities is often unfeasible. We examined the variation of demographic traits using a global tropical forest data set covering 4500 species in 10 large-scale tree inventories. With a hierarchical Bayesian approach, we quantified the distribution of mortality and growth rates of all tree species at each site. This allowed us to test the prediction that demographic differences facilitate species richness, as suggested by the theory that a tradeoff between high growth and high survival allows species to coexist. Contrary to the prediction, the most diverse forests had the least demographic variation. Although demographic differences may foster coexistence, they do not explain any of the 16-fold variation in tree species richness observed across the tropics.


PLOS Biology | 2008

Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities

Jérôme Chave; Richard Condit; Helene C. Muller-Landau; Sean C. Thomas; Peter S. Ashton; Sarayudh Bunyavejchewin; Leonardo Co; H. S. Dattaraja; Stuart J. Davies; Shameema Esufali; Corneille E. N. Ewango; Kenneth J. Feeley; Robin B. Foster; Nimal Gunatilleke; Savitri Gunatilleke; Pamela Hall; Terese B. Hart; Consuelo Hernández; Stephen P. Hubbell; Akira Itoh; Somboon Kiratiprayoon; James V. LaFrankie; Suzanne Loo de Lao; Jean-Remy Makana; Md. Nur Supardi Noor; Abdul Rahman Kassim; Cristián Samper; Raman Sukumar; Hebbalalu S. Suresh; Sylvester Tan

In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16–52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha−1 y−1, 95% confidence intervals [0.07, 0.39] MgC ha−1 y−1), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y−1) compared with the tree community as a whole (+0.15 % y−1); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y−1), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.


Journal of Ecology | 2013

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan A. Chisholm; Helene C. Muller-Landau; Kassim Abdul Rahman; Daniel P. Bebber; Yue Bin; Stephanie A. Bohlman; Norman A. Bourg; Joshua S. Brinks; Sarayudh Bunyavejchewin; Nathalie Butt; Hong-Lin Cao; Min Cao; Dairon Cárdenas; Li-Wan Chang; Jyh-Min Chiang; George B. Chuyong; Richard Condit; H. S. Dattaraja; Stuart J. Davies; Alvaro Duque; Christine Fletcher; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; Rhett D. Harrison; Robert W. Howe; Chang-Fu Hsieh; Stephen P. Hubbell; Akira Itoh; David Kenfack

1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.


Ecology Letters | 2014

Temporal variability of forest communities: empirical estimates of population change in 4000 tree species

Ryan A. Chisholm; Richard Condit; K. Abd Rahman; Patrick J. Baker; Sarayudh Bunyavejchewin; Yu-Yun Chen; George B. Chuyong; H. S. Dattaraja; Stuart J. Davies; Corneille E. N. Ewango; C.V.S. Gunatilleke; I. A. U. Nimal Gunatilleke; Stephen P. Hubbell; David Kenfack; Somboon Kiratiprayoon; Yiching Lin; Jean-Remy Makana; Nantachai Pongpattananurak; Sandeep Pulla; Ruwan Punchi-Manage; Raman Sukumar; Sheng-Hsin Su; I-Fang Sun; Hebbalalu S. Suresh; Sylvester Tan; Duncan W. Thomas; Sandra L. Yap

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Multispecies coexistence of trees in tropical forests: spatial signals of topographic niche differentiation increase with environmental heterogeneity

Calum Brown; David F. R. P. Burslem; Janine Illian; L. Bao; Warren Y. Brockelman; Min Cao; L. W. Chang; H. S. Dattaraja; Stuart J. Davies; C.V.S. Gunatilleke; I. A. U. N. Gunatilleke; JianXiong Huang; Abd Rahman Kassim; J. V. LaFrankie; Jane B. Lian; Luxiang Lin; Keping Ma; Xiangcheng Mi; Anuttara Nathalang; S. Noor; Perry S. Ong; Raman Sukumar; Sheng-Hsin Su; I-Fang Sun; Hebbalalu S. Suresh; Sylvester Tan; Jill Thompson; María Uriarte; Renato Valencia; Sandra L. Yap

Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.


Journal of Biosciences | 2006

Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India.

Cheryl Nath; H. S. Dattaraja; Hebbalalu S. Suresh; N. V. Joshi; Raman Sukumar

Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988–2000.Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained <10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival.Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.


The American Naturalist | 2012

The Contribution of Rare Species to Community Phylogenetic Diversity across a Global Network of Forest Plots

Xiangcheng Mi; Nathan G. Swenson; Renato Valencia; W. John Kress; David L. Erickson; Haibao Ren; Sheng-Hsin Su; Nimal Gunatilleke; Savi Gunatilleke; Zhanqing Hao; Wan-Hui Ye; Min Cao; Hebbalalu S. Suresh; H. S. Dattaraja; Raman Sukumar; Keping Ma

Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.


Journal of Vegetation Science | 2002

Density-dependence in common tree species in a tropical dry forest in Mudumalai, southern India

Robert John; H. S. Dattaraja; Hebbalalu S. Suresh; Raman Sukumar

Abstract Density‐dependence in tree population dynamics has seldom been examined in dry tropical forests. Using longterm data from a large permanent plot, this study examined 16 common species in a dry tropical forest in southern India for density‐dependence. Employing quadrat‐based analyses, correlations of mortality, recruitment and population change with tree densities were examined. Mortality in 1‐10 cm diameter trees was largely negatively correlated with conspecific density, whereas mortality in > 10 cm diameter trees was positively correlated. Mortality was, however, largely unaffected by the basal area and abundance of heterospecific trees. Recruitment was poor in most species, but in Lagerstroemia microcarpa (Lythraceae ), Tectona grandis (Verbenaceae ) and Cassia fistula (Fabaceae ), species that recruited well, strong negative correlations of recruitment with conspecific basal area and abundance were found. In a few other species that could be tested, recruitment was again negatively correlated with conspecific density. In Lagerstroemia, recruitment was positively correlated with the basal area and abundance of heterospecific trees, but these correlations were non‐significant in other species. Similarly, although the rates of population change were negatively correlated with conspecific density they were positive when dry‐season ground fires occurred in the plot. Thus, the observed positive density‐dependence in large‐tree mortality and the negative density‐dependence in recruitment in many species were such that could potentially regulate tree populations. However, repeated fires influenced density‐dependence in the rates of population change in a way that could promote a few common species in the tree community.


PLOS ONE | 2016

Controls of Soil Spatial Variability in a Dry Tropical Forest

Sandeep Pulla; Jean Riotte; Hebbalalu S. Suresh; H. S. Dattaraja; Raman Sukumar

We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.


Journal of Ecology | 2018

The roots of the drought: Hydrology and water uptake strategies mediate forest‐wide demographic response to precipitation

Rutuja Chitra‐Tarak; Laurent Ruiz; H. S. Dattaraja; M. S. Mohan Kumar; Jean Riotte; Hebbalalu S. Suresh; Sean M. McMahon; Raman Sukumar

1. Drought-induced tree mortality is expected to increase globally due to climate change, with profound implications for forest composition, function and global climate feedbacks. How drought is experienced by different species is thought to depend fundamentally on where they access water vertically below-ground, but this remains untracked so far due to the difficulty of measuring water availability at depths at which plants access water (few to several tens of metres), the broad temporal scales at which droughts at those depths unfold (seasonal to decadal), and the difficulty in linking these patterns to forest-wide species-specific demographic responses. 2. We address this problem through a new eco-hydrological framework: we used a hydrological model to estimate below-ground water availability by depth over a period of two decades that included a multi-year drought. Given this water availability scenario and 20year long-records of species-specific growth patterns, we inversely estimated the relative depths at which 12 common species in the forest accessed water via a model of water stress. Finally, we tested whether our estimates of species relative uptake depths predicted mortality in the multi-year drought. 3. The hydrological model revealed clear below-ground niches as precipitation was decoupled from water availability by depth at multi-annual scale. Species partitioned the hydrological niche by diverging in their uptake depths and so in the same forest stand, different species experienced very different drought patterns, resulting in clear differences in species-specific growth. Finally, species relative water uptake depths predicted species mortality patterns after the multi-year drought. Species that our method ranked as relying on deeper water were the ones that had suffered from greater mortality, as the zone from which they access water took longer to recharge after depletion. 4. Synthesis. This research changes our understanding of how hydrological niches operate for trees, with a trade-off between realized growth potential and survival under drought with decadal scale return time. The eco-hydrological framework highlights the importance of species-specific below-ground strategies in predicting forest response to drought. Applying this framework more broadly may help us better understand species coexistence in diverse forest communities and improve mechanistic predictions of forests productivity and compositional change under future climate.

Collaboration


Dive into the H. S. Dattaraja's collaboration.

Top Co-Authors

Avatar

Raman Sukumar

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart J. Davies

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Richard Condit

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Pulla

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge