Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. S. J. van der Zant is active.

Publication


Featured researches published by H. S. J. van der Zant.


Nano Letters | 2012

Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor

Andres Castellanos-Gomez; Maria Barkelid; A. M. Goossens; V. E. Calado; H. S. J. van der Zant; Gary A. Steele

Single-layer MoS(2) is an attractive semiconducting analogue of graphene that combines high mechanical flexibility with a large direct bandgap of 1.8 eV. On the other hand, bulk MoS(2) is an indirect bandgap semiconductor similar to silicon, with a gap of 1.2 eV, and therefore deterministic preparation of single MoS(2) layers is a crucial step toward exploiting the large direct bandgap of monolayer MoS(2) in electronic, optoelectronic, and photovoltaic applications. Although mechanical and chemical exfoliation methods can be used to obtain high quality MoS(2) single layers, the lack of control in the thickness, shape, size, and position of the flakes limits their usefulness. Here we present a technique for controllably thinning multilayered MoS(2) down to a single-layer two-dimensional crystal using a laser. We generate single layers in arbitrary shapes and patterns with feature sizes down to 200 nm and show that the resulting two-dimensional crystals have optical and electronic properties comparable to that of pristine exfoliated MoS(2) single layers.


Physical Review Letters | 2006

Electron transport through single Mn12 molecular magnets

Hubert B. Heersche; Z. de Groot; J. A. Folk; H. S. J. van der Zant; C. Romeike; M. R. Wegewijs; Laura Zobbi; Davide Barreca; Eugenio Tondello; Andrea Cornia

We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving nondegenerate spin multiplets.


Applied Physics Letters | 2008

Nanomechanical properties of few-layer graphene membranes

Menno Poot; H. S. J. van der Zant

We have measured the mechanical properties of few-layer graphene and graphite flakes that are suspended over circular holes. The spatial profile of the flake’s spring constant is measured with an atomic force microscope. The bending rigidity of and the tension in the membranes are extracted by fitting a continuum model to the data. For flakes down to eight graphene layers, both parameters show a strong thickness dependence. We predict fundamental resonance frequencies of these nanodrums in the gigahertz range based on the measured bending rigidity and tension.


Physical Review Letters | 2006

Electron Transport through SingleMn12Molecular Magnets

Hubert B. Heersche; Z. de Groot; Joshua Folk; H. S. J. van der Zant; C. Romeike; M. R. Wegewijs; Laura Zobbi; Davide Barreca; Eugenio Tondello; Andrea Cornia

We report transport measurements through a single-molecule magnet, the Mn12 derivative [Mn12O12(O2C-C6H4-SAc)16(H2O)4], in a single-molecule transistor geometry. Thiol groups connect the molecule to gold electrodes that are fabricated by electromigration. Striking observations are regions of complete current suppression and excitations of negative differential conductance on the energy scale of the anisotropy barrier of the molecule. Transport calculations, taking into account the high-spin ground state and magnetic excitations of the molecule, reveal a blocking mechanism of the current involving nondegenerate spin multiplets.


Science | 2009

Strong Coupling Between Single-Electron Tunneling and Nanomechanical Motion

Gary A. Steele; A. K. Hüttel; B. Witkamp; Menno Poot; H. B. Meerwaldt; Leo P. Kouwenhoven; H. S. J. van der Zant

Tuning Carbon Nanotube Resonances Nanoscale resonators can be used in sensing and for processing mechanical signals. Single-walled carbon nanotubes have potential design advantages as resonators in that their oscillatory motion could be coupled to electron transport (see the Perspective by Hone and Deshpande). Steele et al. (p. 1103, published online 23 July) and Lassagne et al. (p. 1107, published online 23 July) report that the resonance frequency of a suspended single-walled carbon nanotube can be excited when operated as a single-electron transistor at low temperatures. Electrostatic forces are set up when the carbon nanotubes charge and discharge. The resonance frequency depends on applied voltages, and the coupling is strong enough to drive the mechanical motion into the nonlinear response regime. Differences in the responses of the devices in the two studies reflect in part the different quality factors of the resonators and different cryogenic temperatures. Individual electrons tunneling onto and out of a carbon nanotube can be used to tune its oscillatory motion. Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potential using a nearby antenna. Single-electron charge fluctuations created periodic modulations of the mechanical resonance frequency. A quality factor exceeding 105 allows the detection of a shift in resonance frequency caused by the addition of a single-electron charge on the nanotube. Additional evidence for the strong coupling of mechanical motion and electron tunneling is provided by an energy transfer to the electrons causing mechanical damping and unusual nonlinear behavior. We also discovered that a direct current through the nanotube spontaneously drives the mechanical resonator, exerting a force that is coherent with the high-frequency resonant mechanical motion.


Science | 2014

Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices

Mark P. Boneschanscher; Wiel H. Evers; Jaco J. Geuchies; Thomas Altantzis; Bart Goris; Freddy T. Rabouw; S. A. P. van Rossum; H. S. J. van der Zant; Laurens D. A. Siebbeles; G. Van Tendeloo; Ingmar Swart; J. Hilhorst; Andrei V. Petukhov; Sara Bals; Daniel Vanmaekelbergh

Nanoparticle lattices and surfaces The challenge of resolving the details of the surfaces or assemblies of colloidal semiconductor nanoparticles can be overcome if several characterization methods are used (see the Perspective by Boles and Talapin). Boneschanscher et al. examined honeycomb superlattices of lead selenide nanocrystals formed by the bonding of crystal faces using several methods, including high-resolution electron microscopy and tomography. The structure had octahedral symmetry with the nanocrystals distorted through “necking”: the expansion of the contact points between the nanocrystals. Zherebetskyy et al. used a combination of theoretical calculations and spectroscopic methods to study the surface layer of lead sulfide nanocrystals synthesized in water. In addition to the oleic acid groups that capped the nanocrystals, hydroxyl groups were present as well. Science, this issue p. 1377, p. 1380; see also p. 1340 Metal-chalcogenide nanocrystals undergo necking and large-scale atomic rearrangements when forming a surface lattice. [Also see Perspective by Boles and Talapin] Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands such as graphene, but also strong spin-orbit coupling. The two-dimensional (2D) assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in 2D metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.


Physical Review B | 2003

Carbon nanotubes as nanoelectromechanical systems

Sami Sapmaz; Ya. M. Blanter; L. Gurevich; H. S. J. van der Zant

We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.


Physical Review Letters | 2010

Nonlinear Modal Interactions in Clamped-Clamped Mechanical Resonators

Hidde J. R. Westra; Menno Poot; H. S. J. van der Zant; Warner J. Venstra

A theoretical and experimental investigation is presented on the intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to measure the energy stored in a specific resonance mode. The observed complex nonlinear dynamics are quantitatively captured by a model based on coupling of the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams.


Physical Review Letters | 2006

Tunneling in suspended carbon nanotubes assisted by longitudinal phonons.

Sami Sapmaz; Pablo Jarillo-Herrero; Ya. M. Blanter; Cees Dekker; H. S. J. van der Zant

Current-voltage characteristics of suspended single-wall carbon nanotube quantum dots show a series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-k phonon mode (stretching mode) in the nanotube. Agreement is found with a Franck-Condon-based model in which the phonon-assisted tunneling process is modeled as a coupling of electronic levels to underdamped quantum harmonic oscillators. A comparison with this model indicates a rather strong electron-phonon coupling factor of order unity.


Nano Letters | 2010

Electric Field Controlled Magnetic Anisotropy in a Single Molecule

A. S. Zyazin; J. W. G. van den Berg; Edgar A. Osorio; H. S. J. van der Zant; N. P. Konstantinidis; Martin Leijnse; M. R. Wegewijs; Falk May; Walter Hofstetter; Chiara Danieli; Andrea Cornia

We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

Collaboration


Dive into the H. S. J. van der Zant's collaboration.

Top Co-Authors

Avatar

T. P. Orlando

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.E. Mooij

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cees Dekker

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Warner J. Venstra

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

O.C. Mantel

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Slot

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gary A. Steele

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Enrique Burzurí

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

B. Witkamp

Delft University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge